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Abstract

Statistical tools for modeling covariance structures have been shown useful in

Medicine for studies in genetics. In that context, factor analysis models stand out

for its ability in identifying latent factors capable of reducing data dimensionality and

explaining observed variability. Usually, latent factors are interpreted as unobserved

physiological mechanisms underlying the studied phenomenon. Confirmatory factor

analysis models are characterized by allowing the researcher to pre-specify model’s

elements, as for example, the number of latent factors, the loading matrix structure and

linear restrictions on the parameters. Those models allow the validation of hypothesis

in gene co-expression studies. Confirmatory factor analysis models under normality

assumption for the data are well consolidated in the literature. Our aim is to develop a

more general class capable of integrate several independent populations extending the

data’s normality assumption to a more flexible class of distributions, the class of scale

mixture of normal (SMN). The class of scale mixture of normal includes, as special

cases, the normal distribution and distributions with heavy tails as the t-Student, con-

taminated normal ans slash. This model allows to specify parameter restrictions, which

leads to important particular cases of covariance structures, making it more flexible in

its specification and distributional assumptions. Model identifiability is studied, with

necessary and/or sufficient conditions for parameter identification being presented. To

estimate the model’s parameters we propose an ECM algorithm and the estimators’

performance in finite samples is evaluated through Monte Carlo simulation studies.

We conclude the study with an illustration considering a confirmatory model for the

pathological dynamic of pancreas cancer based on actual gene expression data.

Keywords: Multiple Confirmatory Factor Analysis. Identifiability. ECM algorithm. Class

of scale mixture of normal distributions (SMN).



Resumo

Ferramentas estatísticas voltadas para a modelagem de estruturas de covariân-

cias têm se mostrado úteis em medicina para estudos genéticos. Nesse contexto,

modelos de análise fatorial destacam-se por sua habilidade em identificar fatores la-

tentes capazes de reduzir a dimensionalidade dos dados e explicar a variabilidade ob-

servada. Comumente, fatores latentes são interpretados como mecanismos fisiológi-

cos não observáveis subjacentes ao fenômeno estudado. Modelos de análise fatorial

confirmatória caracterizam-se por possibilitar ao pesquisador a pré-especificação de

elementos do modelo, como por exemplo, o número de fatores latentes, a estrutura

da matriz de loadings e restrições lineares nos parâmetros. Tais modelos permitem

a validação de hipotéses em estudos de coexpressão gênica. Modelos de análise fa-

torial confirmatório sob suposição de normalidade de dados estão bem consolidados

na literatura. Nosso objetivo é desenvolver uma classe mais geral capaz de integrar

várias populações independentes estendendo a suposição de normalidade de dados

para uma classe mais flexível de distribuições, a classe de misturas de escala da dis-

tribuição normal (SMN). A classe SMN contém, como casos especiais, a distribuição

normal e distribuições com caudas pesadas tais como t-Student, normal contaminada

e slash. Este modelo permite especificar restrições nos parâmetros, as quais levam a

importantes casos particulares de estruturas de covariância, tornando-o mais flexível

em sua especificação e em suas suposições distribucionais. A identificabilidade do

modelo é estudada e condições necessárias e/ou suficientes para identificação dos

parâmetros são apresentadas. Para a estimação dos parâmetros do modelo propo-

mos um algoritmo ECM e a performance dos estimadores em amostras finitas é avali-

ada através de estudos de simulação de Monte Carlo. Finalizamos nosso estudo com

uma ilustração considerando o modelo confirmatório para a dinâmica patológica do

câncer de pâncreas utilizando dados reais de expressão gênica.

Palavras chave: Análise Fatorial Confirmatória Múltipla. Identificabilidade. Algoritmo

ECM. Classe de misturas de escala da distribução normal (SMN).
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1 Introduction

1.1 Resumo da seção

Nesta seção introdutória nós apresentamos a motivação do problema de pes-

quisa e elementos essenciais de probabilidade e estatística para o entendimento das

técnicas desenvolvidas nas seções subsequêntes. A motivação surge da necessidade

de testar hipóteses de causalidade no campo da medicina, especialmente no campo

da genética, onde avanços recentes em tecnologia laboratorial tem possibilitado o acu-

mulo de grandes volumes de dados. Neste ponto, a Análise fatorial (AF) apresentasse

como um técnica multivariada relevante para modelagem em genética, como tem se

observado na literatura recente. Neste sentido, nossas contribuições surgem a partir

de um novo modelo de AF que estende a suposição de normalidade dos dados para

a classe de misturas de escala de normal (SMN). Na seção final, nós introduzimos a

classe SMN, a qual será a base para nosso novo modelo de AF.

1.2 Motivation

Modern advances in laboratory technology for processing genetic material have

driven the medical sciences towards the use of new methodologies for planning exper-

iments (KERR, 2001; GERMAIN et al., 2011). Two important modern technologies are

RNA sequencing (RNA-seq) and microarrays, which allow the simultaneous measure-

ment of thousands of biological parameters in cell populations, with the possibility of

covering the entire transcriptome, i.e. all RNA molecules in the cell (KERR, 2001). The

enlarged amount of data generated in modern medical researches contributes also

for the generation of new theories in molecular cell biology, genetics and immunology

(KERR, 2001; RIECKMANN et al., 2017).

Models for the immune system have been conceived with the aid of mathematics

through differential equations (PERELSON, 1989), bio-informatics using neural net-

work (HOFFMANN, 1986) and methods based on simulation (GERMAIN et al., 2011),

and statistics with latent variable models (ROY et al., 2014; BROWN et al., 2015; BUET-

TNER et al., 2017; DE VITO, 2016; WANG and PARMIGIANI, 2018). Focusing on sta-

tistical methods, network models for the immune system are commonly based on data

gathered in experiments measuring gene expression, mainly with outputs of RNA-seq
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and microarray essays (BROWN et al., 2015). Those models are called gene co-

expression models (ROY et al., 2014).

Usually, gene co-expression models are conceived in terms of latent factors,

which are thought of as unobserved biological pathways 1 (DE VITO, 2016). Bio-

logical pathways can only be directly observed in laboratory experiments, which are

over-simplified versions of physiological processes and usually leads to reductionist

conclusions about the immune system (GERMAIN et al., 2011). The statistical for-

mulation of biological pathways as latent random variables allows for a thorough and

more realistic analysis since it uses data directly measured on the actual system being

modeled, the human physiology. (DE VITO, 2016).

Factor analysis models (FA) are an important class of latent variable models com-

monly applied for the exploration of biological pathways using microarray data (BROWN

et al., 2015; BUETTNER et al., 2017). In the context of gene co-expression modeling,

refinements of the FA model were undertaking by, for example, Brown et al. (2015) and

Buettner et al. (2017) with the aim of segregate random noise due to batch effects from

biological signal in order to effectively infer new biological pathways and improve gene

set annotation, i.e. to refine the knowledge of genes’ biological function.

Multiple factor analysis (MFA) models (JÖRESKOG, 1971), which are extensions

of FA models oriented to the simultaneous analysis of several independent data sets,

has also been shown an important statistical tool for modeling gene co-expression

with microarray data from different tissues or from independent experiments in meta-

analysis studies 2 (DE VITO, 2016; WANG and PARMIGIANI, 2018). De Vito (2016)

explored a particular MFA model applied to the refinement of biological signals using

microarray data in meta-analysis studies. Wang and Parmigiani (2018) studied a MFA

model towards meta-analysis studies producing gene expression data through different

methods. The authors discussed how to combine the different source of data in order

to generate reliable scores for genes.

Despite the importance of statistical methods designed to explore and to reveal

new pathways in human physiology, there is a lack of confirmatory models for testing

pre-specified theories arising in medical researches. For that aim, the most commonly

1A biological pathway is a cascade of chemical and physical events connecting molecules and cells
in complex networks for the control of physiological functions.

2The term meta-analysis refers to the simultaneous analysis of several independent data sets stem-
ming from related studies.
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used model is the multiple confirmatory factor analysis (MCFA) model proposed by

Jöreskog (1971). The major limitation of Jöreskog (1971)’s model is that it assumes

normality for the observed data. Although, recent review papers on the topic of ap-

plied statistics to medical researches call attention for the violation of the normality as-

sumption in several situation commonly occurring in medical studies (MURPHY, 2004;

GENSER et al., 2007; WANG et al., 2015).

FA models allowing for the relaxation of the normality assumption has appeared

in the statistical literature since at least Browne and Shapiro (1987), with the author

proposing the use of scale mixture of normal (SMN) distributions (ANDREWS and

MALLOWS, 1974) for the common latent factors in the exploratory FA model. The SMN

class of probability distributions includes, as special cases, the normal distribution and

distributions with heavy tails as the t-Student and contaminated normal (WEST, 1987).

Since it was proposed by Jöreskog (1971), the MCFA model have been extensively

studied mainly in what concerns hypothesis testing of invariance using the likelihood

ratio test (YUAN and BENTLER, 2004, 2006; YUAN and CHAN, 2016), but according

to our literature review, estimation of MCFA models for non-normal responses appears

only in the Bayesian statistical literature. Song and Lee (2001) proposed a Bayesian

MCFA for handling mixed types of continuous and ordinal variables.

The importance of introducing MCFA models adequate for modeling non-normal

response data relies in the increasing interest of medical researchers in testing new

theories regarding gene functions in the human physiology and their interaction through

co-expression for regulating biological pathways (CABRAL-MARQUES and RIEMEKAS-

TEN, 2017). The SMN class of distributions proposed by Andrews and Mallows (1974)

offers a theoretically sound framework for extending the MCFA model of Jöreskog

(1971) to include latent factors with heavier tails than the normal distribution, hence

allowing for more flexible data analysis.

In our research the main objective is to define and to estimate a new MCFA model

integrating the SMN class of distributions in the probabilistic assumptions of the model.

The usefulness of the new model shall be confirmed by means of Monte Carlo simula-

tion studies and an application using real data stemming from researches in oncology.

We propose and evaluate a sound hypothesis about a gene co-expression network

regulating the pathology of pancreas cancer. Our hypothesis is based on a exploratory
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multiple group factor analysis and its validity is confirmed by comparison of the results

with the specialized knowledge at disposal in the literature about the molecular biol-

ogy of cancer (CASEY et al., 2007; LI et al., 2013; FANG et al., 2014; GIALELI et al.,

2014; COX et al., 2015; GASCARD and TLSTY, 2016; JIA et al., 2016; HAMMER et al.,

2017).

1.3 Contributions

The main contributions of this research are the following:

• To extend the distributional assumptions of the MCFA model of Jöreskog (1971)

by allowing the observed data to be distributed in the class of scale mixture of

normal (SMN) distributions;

• To define identification conditions for the model’s parameters;

• To develop an Expectation-Conditional-Maximization (ECM) algorithm for estima-

tion of the model’s parameters.

1.4 Preliminaries

In the following, we review the theory of factor analysis and present the SMN

class of distributions.

1.4.1 Factor analysis

The factor analysis (FA) model presented by Jöreskog (1969) describes a p-

dimensional random variable Y in terms of latent variables through the linear equation

Y = µ +ΛZ + ε, (1.1)

where µ, of order p×1, is an intercept, Λ is a p× k loading matrix, Z is a k×1 random

vector of common latent factors that explain the shared variation of the p dimensions of

Y and ε is a p×1 random vector of noise specific to each dimension of Y . In addition,

suppose (Z,ε)> follows a multivariate normal distribution given by

Z

ε

∼ Np+k

0

0

 ,
ζ 0

0 Ψ

 , (1.2)
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where ζ is a covariance matrix for the common latent factors and Ψ is diagonal variance

matrix for the specific factors.

The FA model (1.1) with assumption (1.2) says that the variability common to all

p dimensions of Y is completly determined by the common latent factors Z (RUBIN and

THAYER, 1982). Also, its possible to demonstrate (ANDERSON and RUBIN, 1956)

that the model induces the following non-linear latent structure on Σ, the covariance

matrix of Y ,

Σ = ΛζΛ>+Ψ, (1.3)

which is known in the literature as the system of normal equations for the FA model

(REILLY, 1995).

The FA model can be interpreted in two forms (BEKKER et al., 1994, pp. 75-76).

The first form of interpretation leads to the Confirmatory Factor Analysis (CFA), where

the linear equation (1.1) is seen as a model of causation. In CFA, the common factors

Z are underling unobserved variables generating Y , although random noise can affect

each dimension of Y . Specialized knowledge about the underling process generating

Y can be introduced in the CFA model as constraints in its parameters, specifically, by

pre-specifying values to some elements of Λ, ζ or Ψ (JÖRESKOG, 1969). The second

form of interpretation of FA is called Exploratory Factor Analysis (EFA). In EFA, the

main objective is to represent the observed variables in a space of smaller dimension.

That is accomplished by representing the observed variables as linear combinations of

latent factors. Although, in EFA parameter constraints are included only to identify the

model (JÖRESKOG, 1967).

The CFA and EFA models share the same basic model structure defined in (1.1)

and (1.2), with their main difference residing on the matrix ζ and model identification

strategy. In CFA models, ζ is conceptualized in a way that allows any kind of constraint

in its parameters, among fixed values and equality constraints. Although, in EFA the

covariance matrix ζ is fixed and equal to the identity matrix of order k. Regarding model

identification, the EFA model is just identified, i.e. the number of identifying restrictions

in the model’s parameters are not greater than the number necessary for guaranteeing

model identification, while in CFA models the parameters are usually over-identified,

i.e. there exist more than one normal equation in the system (1.3) contributing to a

unique solution to some of the parameters, as shown by Bollen (1989, pp. 88-89).
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An important extension of the CFA model allows for the simultaneous analysis

of independent populations. This model was proposed by Jöreskog (1971) and is

called Multiple Group Confirmatory Factor Analysis (MCFA). The MCFA modeling con-

text arises in situations where a researcher wants to test if a specified hypothetical

latent structure could accurately describe the common variability of a set of variables

observed in G≥ 1 independent groups of individuals. In a typical application in the field

of Psychometrics, the MCFA model would allow the researcher to verify if a set of hypo-

thetical constructs of his interest could be studied in two or more independent groups of

individuals using the same measurement instrument in all groups (JÖRESKOG, 1971;

SÖRBOM, 1974).

The MCFA model proposed by Jöreskog (1971) corresponds to G ≥ 1 simulta-

neous CFA models, each one defined as in (1.1) and (1.2), but with the additional

feature that parameters could be shared among groups. That new feature amounts

to introduce a dependence of the parameter matrices in each of the G CFA models

on a general vector of parameters θ . Hence, for g ∈ {1, . . . ,G}, the MCFA model is

mathematically expressed as

Yg = µg +Λg(θ)Zg + εg (1.4)

and Zg

εg

∼ Npg+kg

0

0

 ,
ζg(θ) 0

0 Ψg(θ)

 , (1.5)

where pg and kg correspond to the dimensions of the random vectors Yp and Zg, re-

spectively.

If in (1.4) it is supposed that the intercept µg also depends on θ and the expected

value of Zg in (1.5) is non-zero, g = 1, . . . ,G, then the model of Jöreskog (1971) extends

to a more general version of the MCFA model proposed by Sörbom (1974). The models

of Jöreskog (1971) and Sörbom (1974) differ not only in the estimation of parameters,

but also and more decisively in its identifiability conditions. The field of application of

both models differ according to the degree of invariance the researcher is interested in

investigate.

Meredith and Teresi (2006) reviewed the definition and assumptions of factorial

invariance, highlighting the most common models setups of MCFA used for research.
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The hierarchy of factorial invariance starts with configural invariance, where its as-

sumed that Λg(θ) in (1.4) have the same configuration of fixed and free parameters,

as well as the same number of latent common factors, in all G groups. When Λg(θ)

is exactly the same in all G groups we face the kind of invariance called pattern in-

variance. Together, configural and pattern invariance are considered weak forms of

invariance, since they do not guarantee direct comparison between observed variables

across groups. With weak invariance, the most the researcher can assert about the

underlying latent structure relating the G groups is that the observed variables are mea-

suring the same set of constructs in all groups. The remaining two levels of invariance

are called strong invariance and strict invariance, and are both related to invariance

of µg(θ) and common factor means. Hence, the MCFA model defined in (1.4) and

(1.5) can only account for configural and pattern invariance, although invariance of the

matrices Ψg, g = 1, . . . ,G, and partial levels of invariance obtained by restricting only

specific parameters to be equal across groups are also allowed in MCFA (MEREDITH

and TERESI, 2006).

1.4.2 Scale mixture of normal distributions

The scale mixture of normal (SMN) distributions was proposed by Andrews and

Mallows (1974) in a study discussing the necessary and sufficient conditions for the

existence of a random variable X generated as the ratio Z/U , where Z has a standard

normal distribution and U is independent of Z. Andrews and Mallows (1974) deter-

mined the density function of X and established ways for determining the distribution

of U .

In the multivariate case, a random vector X belonging to the SMN class of dis-

tributions can still be characterized by its stochastic representation, analogously as

proposed by Andrews and Mallows (1974). The definition below gives the desired

statement.

Definition 1. A p-dimentional random vector Xp with location parameter µ and scale

matrix Σ is in the SMN class of distributions if there exists a positive uni-dimensional

random variable U , such that the following stochastic representation is valid

Xp = µ +
Zp√
U
, (1.6)
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where Zp ∼ Np(0,Σ) is distributed independently of U .

Following Andrews and Mallows (1974), an immediate result of Definition 1 is the

density function f(·) of Xp, which is given by

f(x) = |Σ|−1/2
∫

∞

0

( u
2π

)p/2
exp
[
−u

2
(x−µ)>Σ−1(x−µ)

]
dH(u|ν), (1.7)

where H(·|ν) is the distribution function of U parametrized by the vector ν. From now

on, we shall denote a random vector with the stochastic representation (1.6) or, equiv-

alently, with density function (1.7) by Xp ∼ SMNp(µ,Σ,H(·|ν)).

The work of Andrews and Mallows (1974) extended the results of an early work

published by Beale and Mallows (1959) on the properties of scale mixing of symmetric

distribution. Beale and Mallows (1959) had already proved several conditions on the

moment of mixing distributions that allowed the conclusion that probability distributions

in the SMN class have higher kurtosis than the normal distribution, except of course

for the normal distribution itself. This fact is pointed out by Kano (1994).

Properties of the SMN distributions can be obtained by noting its relation to the

elliptical class of distributions. Fang and Zhang (1990) give a full discussion of elliptical

distributions and proves the following property, which holds for the SMN distributions.

Property 1. Let Xp ∼ SMNp(µ,Σ,H(·|ν)). For any matrix A of order d× p and of full

rank, and for any vector α of dimension d×1, there is a random variable Yd = α +AXp

such that Yd ∼ SMNd
(
α +Aµ,AΣA>,H(·|ν)

)
.

Proof. The proof is in Fang and Zhang (1990, p. 66).

Special cases of distribtuions in the SMN class were already given by Andrews

and Mallows (1974), as for example, the t-Student, logistic and Laplace distributions.

West (1984) and West (1987) gives other examples of distribtuions in the SMN class,

as for example, the contaminated normal and power exponential distribution.

Next, we shall characterize the four types of SMN distributions explored in our

research:

• Normal distribution: the normal distribution is obtained when in the stochastic

representation (1.6) the random variable U is degenerated in 1, such that P(U =

1) = 1;
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• t-Student distribution: when U ∼ Gamma(ν/2,ν/2), then the random variable X

with stochastic representation (1.6) follows a p-variate t-Student distribution with

location parameter µ and scale matrix Σ, denoted as tp(µ,Σ,ν). The density

function is given by

f(x|ν) =
Γ(ν+p

2 )

Γ(ν

2 )ν
p/2π p/2|Σ|1/2

[
1+

1
ν
(x−µ)>Σ−1(x−µ)

]− ν+p
2

(1.8)

• Contaminated normal distribution: Let γ be real number in the interval (0,1).

When U is a discrete random variable with distribution given by P(U = γ) = ξ and

P(U = 1) = 1−ξ , then the random variable X with stochastic representation (1.6)

follows a p-variate contaminated normal distribution, denoted as CNp(µ,Σ,γ,ξ )

with density given by

f(x|ξ ,γ) = ξ φp(x|µ,γ−1Σ)+(1−ξ )φp(x|µ,Σ), (1.9)

where φp(·|µ,Σ) is the density of a p-variate normal random variable with location

µ and variance Σ,

• Slash distribution: when U ∼Beta(ν ,1) then the random variable X with stochastic

representation (1.6) follows a p-variate slash distribution, denoted as SLp(µ,Σ,ν).

The density function is given by

f(x|ν) = ν
p/2
∫ 1

0

uν−1

(2π)p/2|Σ|1/2 exp
[
−u

2
(x−µ)>Σ−1(x−µ)

]
du. (1.10)
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2 Multiple group factor analysis with SMN distributions

2.1 Resumo da seção

Iniciamos nesta seção a teoria do modelo de análise fatorial confirmatório em múlti-

plos grupos supondo distribuição dos fatores latentes na classe SMN. Denotamos o

modelo por MCFA-SMN. O modelo é definido e sua relação com outros modelos pre-

sentes na literatura é estabelicida, destacando-se casos particulares. A função de

verossimilhança é apresentada, justificando a necessidade de um algoritmo de esti-

mação alternativo, o algoritmo ECM. A identificabilidade do modelo é tratada de forma

geral, com a apresentação de condiçoes necessárias e/ou suficientes para a identifi-

cação dos parâmetros. A subseção onde se trata da estimação dos pararâmetros do

modelo apresenta um algoritmo ECM que cumpre a propriedade space filling de Meng

and Rubin (1993), garantindo as propriedades de convergência do algoritmo. Méto-

dos para estimar o desvio padrão das estimativas de máxima verossimilhança são

apresentados. Estes métodos dispensam o cáculos de derivadas de segunda ordem.

2.2 Model definition

Suppose a CFA model holds in each of G distinct groups or populations. The

individual CFA models shall be called sub-models. Additionally, suppose there exist

the prior knowledge that sub-models could share parameters with each other in a well

defined way. Let θ be a generic vector comprised by the parameters existent in all

sub-models, except possibly by parameter intercepts. Mathematically, the MCFA-SMN

model is specified in terms of the random vector Yig of order pg× 1 related to latent

factors through the equation

Yig−µg = Λg(θ)Zig + εig, g = 1, . . . ,G, (2.1)

where i = 1, . . . ,ng is a subject index, µg is a pg×1 intercept specific for the g-th group,

Λg(θ) is a pg× kg matrix of loading coefficients dependent on the vector of parameters

θ , Zig is a kg× 1 random vector of common latent factors and εig is a pg× 1 random

vector of specific latent factors (also called errors).

In this case, we consider that vectors of common and specific latent factors are
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jointly distributed asZig

εig

∼ SMNpg+kg

0

0

 ,
ζg(θ) 0

0 Ψg(θ)

 ,ν
 , g = 1, . . . ,G, (2.2)

where ζg(θ) is the covariance matrix of Zig and Ψg(θ) is the diagonal variance matrix

for εig, both dependent on the vector of parameters θ . The parameter vector ν indexes

the common distribution of the mixing variables Uig∼H(·|ν) that defines the SMN distri-

bution in (2.2), g= 1, . . . ,G. We assume the true value of ν is known and equal between

the G groups.

Without loss of generality, for g ∈ {1, . . . ,G}, suppose Yig is corrected by its mean,

µg. Hence, Equations (2.1) and (2.2) assert the random vector Yig is an affine combina-

tion of common, Zig, and specific, εig, latent factors following a SMN distribution. Hence,

by an application of Property 1, the MCFA-SMN model could be directly specified as

Yig ∼ SMNpg(0,Σg(θ),H(·|ν)), g = 1, . . . ,G, (2.3)

where the scale matrix Σg(θ) has the latent structure

Σg(θ) = Λg(θ)ζg(θ)Λ
>
g (θ)+Ψg(θ). (2.4)

Based on (2.3) and in the density function (1.7), for a given random sample of

size n = ∑
G
g=1 ng taken from the G groups, y = (y>11, . . . ,y

>
n11, . . . ,y

>
1G, . . . ,y

>
nGG)

>, the log-

likelihood has the following form

`(θ) =−1
2

G

∑
g=1

ng

∑
i=1

log |Σg(θ)|+
G

∑
g=1

ng

∑
i=1

log
∫

∞

0
f(yig|θ)dH(u|ν), (2.5)

where

f(yig|θ) =
( u

2π

)pg/2
exp
(
−u

2
y>igΣ

−1
g (θ)yig

)
. (2.6)

The estimation of θ can be achieved by direct maximization of (2.5) using quasi-

Newton methods. For example, under the supposition of normality of latent factors

Equation (2.5) reduces to the log-likelihood of Jöreskog (1971), whose developed a

modified Fletcher-Powell algorithm for maximum likelihood of θ .
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Further specification of the invariance pattern of θ can lead to parsimonious

model structures, including all models of interest present in the literature. We shall

demonstrate through three examples how a set of restrictions placed on θ transforms

the MCFA-SMN models into some important MCFA models. For now, suppose the ob-

servable variables Yig follow a normal distribution, g = 1, . . . ,G, and denote the resultant

model as MCFA-N.

Example 1. If θ = (θ1, . . . ,θg) and the dependence of the model matrices on θ is ex-

pressed as Λg(θ) = Λg(θg), ζg(θ) = ζg(θg) and Ψg(θ) = Ψg(θg), for g = 1, . . . ,G, then

the MCFA-N model corresponds to a separate CFA model for G populations. If G = 1,

the CFA model of Jöreskog (1969) is recovered.

Example 2. If in Example 1, pg = p and kg = k, for all g = 1, . . . ,G, and the dependence

of the loading matrices on θ induces the partition Λg(θ) =
[
Λ(1) Λ

(2)
g

]
, for g = 1, . . . ,G,

where Λ(1) is shared among all G groups and Λ
(2)
g is specific to the g-th group, then

the MCFA-N model corresponds to a confirmatory version of the model proposed by

De Vito (2016). Additionally, if the covariance matrix of common latent factors does not

depend on θ and ζg(θ) = Ik, for all g = 1, . . . ,G, then the same model as proposed by

De Vito (2016) is recovered.

Example 3. If in Example 2, Λ
(2)
g =Λ(2) or, equivalently, if Λg(θ) =Λ, for all g= 1, . . . ,G,

then the resultant model is a MCFA with pattern invariance. That kind of model was

studied by (JÖRESKOG, 1971), and is recovered by the MCFA-N model, as it should

be.

In assuming a SMN distribution for the vector of latent factors the MCFA-SMN

model generalizes the model of Jöreskog (1971), which restricts the vector of latent

factors to have a multivariate normal distribution. The model of De Vito (2016) is a

particular case of Jöreskog (1971), consequently being also generalized by the MCFA-

SMN model. Although still under the assumption of multivariate normality for the latent

factors, the model of Sörbom (1974) is not a particular case of the MCFA-SMN model,

since the Sörbom (1974)’s model allows the intercepts µg to be equal among the G

groups and also allows the latent common factors to have non-zero means.

From now on, we will omit the dependence of model matrices on the vector of

parameters θ in situations where it will not cause any confusion. Hence, for any g ∈
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{1, . . . ,G}, we shall denote Λg = Λg(θ), ζg = ζg(θ) and Ψg = Ψg(θ), unless it is stated

differently.

2.3 Identifiability

Most factor analysis models share two sources of indeterminacy in its parameters,

which became known in the literature as the uniqueness and identification problems

(BOLLEN and JÖRESKOG, 1985). The uniqueness problem stems from the invariance

of factor loading matrices under post-multiplication by an unrestricted non-singular ma-

trix, although in the EFA model that matrix is necessarily orthogonal (ANDERSON and

RUBIN, 1956). In the context of the CFA model, that sort of invariance is related to

rotation, reflexion and sign changes in the common factors’ covariance matrix and, as

well as in EFA, it is a source of non-identifiability of parameters. In the following, we

adapted the definition of the uniqueness problem given by Bollen and Jöreskog (1985)

to the context of MCFA-SMN models.

Definition 2. In the MCFA-SMN model, the uniqueness of Λg and ζg are established if

for every non-singular matrix Tg the transformations Λ∗g = ΛgT
−1
g and ζ∗g = TgζgT

>
g do

not change any of the constrained or unconstrained entries of Λg or ζg, g = 1, . . . ,G.

For the MCFA-SMN model, the uniqueness problem posits the existence of obser-

vationally equivalent parameter vectors θ1 = (Λg,ζg)
G
g=1 and θ2 = (Λ∗g,ζ

∗
g)

G
g=1, i.e. θ1 6=

θ2 implying `(θ1) = `(θ2), where `(·) is the model’s log-likelihood function for a given

sample of observations. Hence the uniqueness problem imposes a search for Λg and

ζg such that Λ∗g = ΛgT
−1
g and ζ∗g = TgζgT

>
g imply Tg = I, g = 1, . . . ,G.

We shall broadly state the identification problem of statistical models in general

and subsequently present it in terms of the MCFA-SMN model through a definition. In

a general modeling framework, the local identification of a parameter vector θ1 ∈H

is attained when a neighborhood of θ1 has no other vector θ2 that is observationally

equivalent to θ1, unless θ1 = θ2 (BEKKER et al., 1994, pp. 17-18). If that neighbor-

hood of θ1 coincides with H, then θ1 is said to be globally identified in H (BEKKER

et al., 1994, pp. 19). Partial identification of θ is attained when some, but not all, of

its entries are identified (BEKKER et al., 1994, pp. 17). To define the identification

problem for MCFA-SMN models we adapted a statement of Reilly (1995) associating

the identification of parameters in CFA models to its normal equations.
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Definition 3. Let θ ∈H ⊂ Rd be the vector having as its elements all distinct parame-

ters that composes the set of matrices {Λg,ζg,Ψg}G
g=1 in the MCFA-SMN model. The

vector of parameters θ is identified in H if it is uniquely determined by Σ(g), g= 1, . . . ,G,

through the system of normal equations (2.4).

According to Definition 3, identification of parameters in the MCFA-SMN model

depends at most on second-order moments conditions. Indeed, that is true for such

models arising from Equations (2.1) and (2.2) when the parameter vector ν indexing

the distribution of the mixing variable is known. Bentler (1983) states that the fourth-

order moments of elliptical distributions are exclusively expressed in terms of second-

order moments and a kurtosis parameter κ, that in the case of SMN distributions is

in turn a function of ν . Hence, in the MCFA-SMN model if ν is free for estimation

its identification may depend on additional conditions aside from that ones presented

in Definition 3. Although not mentioned in the Definition 3, the parameters µg, g =

1, . . . ,G, in the MCFA-SMN model are clearly identified from the first-order moments.

Nonetheless, if µg, as a function of θ , could share some or all of its entries between

a subset B⊂ {1, . . . ,G} of groups, that would be necessary extra conditions based on

first-order moments for the global identification of θ (SÖRBOM, 1974).

Bollen and Jöreskog (1985) give an example of CFA model with parameters spec-

ified in such a way that uniqueness of the factor loading and latent factors’ covariance

matrices does not lead to identification of the whole model’s parameters, showing em-

pirically that the uniqueness and identification problems are not equivalents. In that

same context, Peeters (2012) emphasizes that identification of the factor loading ma-

trix may depend on the identification of specific errors’ variance matrix. In the sequel

we shall give rules for the solution of identification problems in the MCFA-SMN model,

although we leave the uniqueness problem aside.

The following theorem formalizes a simple rationale behind parameter identifica-

tion in multiple group factor analysis models in general and that permeates most of its

practical applications (JÖRESKOG, 1971; SÖRBOM, 1974; SONG and LEE, 2001; DE

VITO, 2016). We refer to the practice of asserting the identification of θ when each of

the vectors θg = (Λg(θ),ζg(θ),Ψg(θ)) are simultaneously identified, g = 1, . . . ,G.

Theorem 1. In the MCFA-SMN model, let θg =(Λg(θ),ζg(θ),Ψg(θ)) and θ =(θ1, . . . ,θG).

If θg ∈H is identified for all g ∈ {1, . . . ,G}, then θ is identified in H.
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Proof. Using the definition of parameter identification given by Bekker, Merckens, and

Wansbeek (1994, pp. 19), identification of θ is achieved if and only if in a neighborhood

of θ each of its parts θg, g = 1, . . . ,G, is identified. Hence, considering a neighborhood

of θ ∈H where it is locally identified, in this neighborhood all the components θg,

g = 1, . . . ,G, are also locally identified. Conversely, if there exist a neighborhood where

θg ∈H is locally identified, for all g = 1, . . . ,G, then θ is identified in this neighborhood.

For attaining global identification of θ in H, the neighborhood defined in the previous

statements must coincide with H.

Theorem 1 gives sufficient conditions for the identification of θ in MCFA-SMN

models with the global or local status of its identification depending on the degree of

identification of its components θg, g = 1, . . . ,G. Since the theorem uses the identifi-

cation of θg, g = 1, . . . ,G, as a way to identify θ , it reduces the identification problem

in MCFA-SMN models to the problem of identifying parameters in G independent CFA

models. Hence, the contribution of Theorem 1 is making available for the identification

of MCFA-SMN models all the well known rules of identification for a single factor analy-

sis model at disposal in the literature (ANDERSON and RUBIN, 1956; BOLLEN, 1989;

REILLY, 1995; REILLY and O’BRIEN, 1996; GEWEKE and ZHOU, 1996; BEKKER and

TEN BERGE, 1997; BAI and LI, 2012; PEETERS, 2012, among others).

An important example of identification constraint appears in applications of ex-

ploratory factor analysis models. To define the desired set of constraints, we follow

Bai and Li (2012) and define recursively the G ≥ 1 loading matrices entering in the

MCFA-SMN model. The loading matrix Λg will be such that its first column has only

non-zero loadings, while in the second column it has the loading λ
(g)
1,2 = 0, in the third

column λ
(g)
1,3 = λ

(g)
2,3 = 0, and so on until the kg-th column where λ

(g)
1,kg

= · · ·= λ
(g)
kg−1,kg

= 0,

for g = 1, . . . ,G. That guarantees a Λg partitioned as an lower triangular matrix of di-

mensions kg× kg and an unrestricted matrix of dimension (p− kg)× kg. Anderson and

Rubin (1956) call this type of constraint the triangular matrix of zeros.

A practical example of an application of this kind of constraint shall be explored

in Section 4, where the reader can find an explicit presentation of loading matrices

following a triangular matrix of zeros form. The next proposition shall give the suffi-

cient conditions for parameter identification in MCFA-SMN models defined with loading

matrices following a triangular matrix of zeros form.
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Proposition 1. Define a MCFA-SMN model where the G≥ 1 loading matrices entering

in the model are all in a triangular matrix of zeros form, as defined in Anderson and

Rubin (1956), and the covariance matrices of common factors are identity matrices of

appropriate order. Then if the loading parameters λ
(g)
j, j , j = 1, . . . ,kg, and g = 1, . . . ,G,

are identified, then all the parameters in the MFCA-SMN model are also identified.

Proof. From the normal equations (2.4), it can be seen that the covariance matrix

Σg =
(

σ
(g)
i, j

)
has its typical element of form

σ
(g)
i, j =

kg

∑
x=1

kg

∑
y=1

λ
(g)
i,x λ

(g)
j,y ς

(g)
x,y +ψ

(g)
i, j , (2.7)

where λ
(g)
i, j , ς

(g)
i, j and ψ

(g)
i, j are the elements in the i-th row and j-th column of the matrices

Λg, ζg and Ψg, respectively.

Constraining the MCFA model to have loading matrices following a triangular ma-

trix of zeros form and common factors with variances equal to unite and covariances

equal to zero, the implied normal equations have the following general form

σ
(g)
i, j =

i

∑
k=1

λ
(g)
i,k λ

(g)
j,k +ψ

(g)
i, j , i = 1, . . . ,pg and j = 1, . . . ,pg. (2.8)

Assume λ
(g)
j, j , j = 1, . . . ,kg, and g = 1, . . . ,G, are identified. With this restriction the

identification of ψ
(g)
j, j , j = 1, . . . , pg, is immediate. Now, the solution to (2.8) in terms of

the remaining parameters is recursive. Consider g fixed. Since for i 6= j ψ
(g)
i, j equals to

zero, we conclude that λ
(g)
j,1 is identified, for all j = 2, . . . ,pg. Now the general rule is that

identification of any λ
(g)
i, j , with i 6= j and both different from unite, follows from the simul-

taneous identification of λ
(g)
i−1, j and λ

(g)
i, j−1. Hence, identification of λ

(g)
j,1 together with the

identifiability assumption of λ
(g)
j, j , for all j = 1, . . . ,pg, imply identification of the parame-

ters in the matrix Λg. That way, for a fixed g, Λg and Ψg have its parameters identified.

To extend identification to the entire MCFA-SMN model we use the results of Theorem

1, since according to this theorem the MCFA-SMN model will be fully identified if each

of its G parts is simultaneously identified.

To understand the Theorem 1 we could begin with the basic modeling framework

of a separate CFA model for G groups, as defined in Example 1 of Section 2.2. In that
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case, the parameter vectors θg = (Λg,ζg,Ψg), g = 1, . . . ,G, partitions θ and the condi-

tions stated in Theorem 1 become not only sufficient but also necessary for parameter

identification. Certainly, any other possible set up for a multiple group CFA model must

derive from the separate CFA model for G groups through the specification of relation-

ships between parameters. According to Reilly (1995), equality constraint should not

hinder the identification of θ , since it can only reduce the number of available solutions

of the original unconstrained model.

Parameters are said over-identified when there exist more then one normal equa-

tion in the system (2.4) establishing the identification of the parameter. Although, in

well specified models all the normal equations should determine a unique solution in-

volving the parameter (BOLLEN, 1989, pp. 89-90). It is also important to notice that,

differently from equality between parameters, constraints on the form of fixed values for

a set of parameters could turn an identified model into an unidentified model (REILLY,

1995). The next example illustrates this last fact and shows the conditions of Theorem

1 are only sufficient for parameter identification of MCFA-SMN models.

Example 4. Consider the following set up of parameter matrices for a MCFA-SMN

model for G = 2 groups:

Λg(θ) =


λ1 0

λ2 0

0 λ3

0 λ4

 , Ψg(θ) =


ψ

(g)
1 0 0 0

0 ψ
(g)
2 0 0

0 0 ψ
(g)
3 0

0 0 0 ψ
(g)
4

 , ζg(θ) =

 1 ς
(g)
1,2

ς
(g)
1,2 1

 , g = 1,2.

The parameter vectors defined in Theorem 1 are θg = (λ1,λ2,λ3,λ4,ψ
(g)
1 ,ψ

(g)
2 ,ψ

(g)
3 ,ψ

(g)
4 ,

ς
(g)
1,2 ), g = 1,2 and θ = (θ1,θ2). Reilly (1995) showed that for any sub-model θg is iden-

tified if and only if ς
(g)
1,2 6= 0, g = 1,2. If this condition is satisfied, then, by Theorem 1,

we conclude θ is identified. In another situation, suppose ς
(2)
1,2 = 0. Now θ2 does not

fulfill the identification condition of Reilly (1995), hence Theorem 1 can not be used to

establish the identification of θ . Yet, since θ1 remains identified and ζ2(θ) is fixed, all

distinct parameters that comprise θ are identified.

A solution for the system of equations defined by the normal equations presented

in (2.7) depends on constrained parameters. As presented by Anderson and Rubin
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(1956), another useful set of constraints known as simple structure establishes that

each observed variable loads in exactly one latent variable . Hence, the simple struc-

ture imposes a loading matrix with each row being composed of only zeros except in

one of its entries. Example of models with parameters following a simple structure are

any of the two parts (g = 1,2) of the MCFA-SMN model presented in Example 4. That

same example allows to conclude that, at least for fixed g, simple structure does not

guarantees parameter identification.

In a MCFA-SMN model, θ = (θ1, . . . ,θG) is under a simple structure if all of its

G components simultaneously follow a simple structure. In this case, Equation (2.7)

simplifies to

σ
(g)
i, j = λ

(g)
i,x∗λ

(g)
j,y∗ς

(g)
x∗,y∗+ψ

(g)
i, j , g = 1, . . . ,G, (2.9)

with x∗ and y∗ specifying the columns of the Λg matrix where the i-th and j-th rows, re-

spectively, have a non-zero loading. Also, x∗ and y∗ are dependent on the group index

g. Reilly (1995) devised a necessary and sufficient rule, based on inspection of equa-

tion (2.9), for identification of parameters in models for a single group (G = 1) under

simple structure. We shall present a theorem extending Reilly (1995)’s identification

rule to models with G≥ 1.

The following theorem generalizes to the context of MCFA-SMN models the Propo-

sition 1 of Reilly (1995). The Proposition 1 of Reilly (1995) appears as a particular case

when G = 1 in the MCFA-SMN model. The proof given by Reilly (1995) remain valid

under minor modifications. Hence the proposed theorem should be viewed as a new

perspective of Reilly (1995)’s result. Moreover, the conditions appearing in the theo-

rem guarantees global identification of θ (REILLY, 1995). Hence, the following theorem

should represent an important advance in the study of identifiability in multiple group

factor analysis models.

Theorem 2. Consider a MCFA-SMN model under simple structure and indexed by the

parameter vector θ . Define P =
{

σ
(g)
i, j = λ

(g)
i,x∗λ

(g)
j,y∗ς

(g)
x∗,y∗+ψ

(g)
i, j

∣∣∣ ψ
(g)
i, j = 0, g = 1, . . . ,G

}
,

the set of normal equations corresponding to a non-diagonal element of Σg(θ), g =

1, . . . ,G. Enumerate the N = ∑
G
g=1 pg(pg−1)/2 distinct elements of P and denote them

as σ1, . . . ,σN . Let σ = (σ1, . . . ,σN). The parameter vector θ is identified if and only if the
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Jacobian matrix

RG =
∂ log |σ |

∂ log |θ>|
(2.10)

is of full column rank.

Proof. According to Proposition 1 of Reilly (1995), P is identified with at least one

solution if and only if |P| =
{
|σ (g)

i, j |= |λ
(g)
i,x∗||λ

(g)
j,y∗||ς

(g)
x∗,y∗|+ψ

(g)
i, j

∣∣∣ ψ
(g)
i, j = 0, g = 1, . . . ,G

}
is

also identified. Applying this result, the identification of P corresponds to a solution of

the system of equations

log
∣∣∣σ (g)

i, j

∣∣∣= log
∣∣∣λ (g)

i,x∗

∣∣∣+ log
∣∣∣λ (g)

j,y∗

∣∣∣+ log
∣∣∣ς (g)

x∗,y∗

∣∣∣ , (2.11)

where g = 1, . . . ,G and i, j = 1, . . . , pg.

The system (2.11) can be written in matrix form as

log |σ |= RG log |θ |, (2.12)

where RG is a binary matrix that corresponds to the Jacobian (2.10).

Applying the chain rule,

RG =
∂ log |σ |

∂ log |θ>|
=

∂ log |σ |
∂σ

∂σ

∂θ>
∂θ

∂ log |θ>|
.

The matrices
∂ log |σ |

∂σ
and

∂θ

∂ log |θ>|
are diagonal and of full column rank, hence

rank(RG) = rank
(

∂σ

∂θ>

)
. Following Reilly (1995), the Implicit Function Theorem guar-

antees a unique solution to the system (2.12) if and only if RG is of full column rank.

Assuming RG of full column rank, the set of parameters {Λg(θ),ζg(θ)}G
g=1 is iden-

tified. Using similar arguments to Reilly (1995), the identification of θ is accomplished

by noting that

Ψg(θ) = Σ(θ)g−Λg(θ)ζg(θ)Λ
>
g (θ), g = 1, . . . ,G,

which shows that {Ψg(θ)}G
g=1 is identified.

The matrix RG defined in (2.10) is easy to be constructed and its construction

follows the same description as given by Reilly (1995), but based in the new set P

defined in Theorem 2. RG has at most N = ∑
G
g=1 pg(pg− 1)/2 rows, each one corres-
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ponding to a normal equation selected from P, and number of columns equals to the

total number of unknown parameters involved in all selected equations. Consider the

enumeration of the elements of P constructed in Theorem 2. The n-th row of RG has

either 0 or 1 entries, with a 1 placed in the columns corresponding to unknown param-

eters of the n-th normal equation enumerated from P and 0 in the remaining columns.

Observe that P could have elements corresponding to redundant equations of form

σ
(g)
i, j = 0. Those redundant equations result in null rows in the RG matrix, so they could

be omitted without changing the column rank of RG.

We shall illustrate the usefulness of Theorem 2 by means of two examples. The

first example recapitulates Example 4 and the second is an example elaborated to

show how global identification of parameters in a MCFA-SMN model can be achieved

starting only from underidentified sub-models entering in its composition.

Example 5. Recapitulate the second situation of Example 4, where ς
(1)
1,2 6= 0 and ς

(2)
1,2 =

0. The non-redundant normal equations in P and its associated matrix R2 are

σ
(1)
1,2 = λ1λ2 σ

(2)
1,2 = λ1λ2

σ
(1)
1,3 = λ1λ3ς

(1)
1,2 σ

(2)
3,4 = λ3λ4

σ
(1)
1,4 = λ1λ4ς

(1)
1,2

σ
(1)
2,3 = λ2λ3ς

(1)
1,2

σ
(1)
2,4 = λ2λ4ς

(1)
1,2

σ
(1)
3,4 = λ3λ4

R2 =



λ1 λ2 λ3 λ4 ς
(1)
1,2

σ
(1)
1,2 1 1 0 0 0

σ
(1)
1,3 1 0 1 0 1

σ
(1)
1,4 1 0 0 1 1

σ
(1)
2,3 0 1 1 0 1

σ
(1)
2,4 0 1 0 1 1

σ
(1)
3,4 0 0 1 1 0

σ
(2)
1,2 1 1 0 0 0

σ
(2)
3,4 0 0 1 1 0


The 7-th and 8-th rows of R2 could be omitted since they are equal to the 1-th and 2-th

rows, respectively. It implies that the entire identification of the model can reside only

on the normal equations of P associated to Σ1, and could be confirmed by the rank rule

of Reilly (1995) applied over the first group g = 1. Of course, the resultant rank should

be the same as rank(R2) = 5. Since R2 has full column rank, θ =
(

λ1,λ2,λ3,λ4,ς
(1)
1,2

)
is

globally identified.

Example 6. Consider the following MCFA-SMN model under simple structure for G = 2
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groups:

g = 1 : Λ1(θ) =


λ1 0

λ2 0

0 λ3

0 λ4

 , Ψ1(θ) =


ψ

(1)
1 0 0 0

0 ψ
(1)
2 0 0

0 0 ψ
(1)
3 0

0 0 0 ψ
(1)
4

 , ζ1(θ) =

ς1,1 ς1,2

ς1,2 ς2,2



g = 2 : Λ2(θ) =


λ1 0

λ2 0

0 λ3

0 λ4

 , Ψ2(θ) =


ψ

(2)
1 0 0 0

0 ψ
(2)
2 0 0

0 0 ψ
(2)
3 0

0 0 0 ψ
(2)
4

 , ζ2(θ) =

1 0

0 1



The non-redundant normal equations in P and its associated matrix R2 are

σ
(1)
1,2 = λ1λ2ς1,1 σ

(2)
1,2 = λ1λ2

σ
(1)
1,3 = λ1λ3ς1,2 σ

(2)
3,4 = λ3λ4

σ
(1)
1,4 = λ1λ4ς1,2

σ
(1)
2,3 = λ2λ3ς1,2

σ
(1)
2,4 = λ2λ4ς1,2

σ
(1)
3,4 = λ3λ4ς2,2

R2 =



λ1 λ2 λ3 λ4 ς11 ς12 ς22

σ
(1)
1,2 1 1 0 0 1 0 0

σ
(1)
1,3 1 0 1 0 0 1 0

σ
(1)
1,4 1 0 0 1 0 1 0

σ
(1)
2,3 0 1 1 0 0 1 0

σ
(1)
2,4 0 1 0 1 0 1 0

σ
(1)
3,4 0 0 1 1 0 0 1

σ
(2)
1,2 1 1 0 0 0 0 0

σ
(2)
3,4 0 0 1 1 0 0 0


Using the information at disposal in Example 4, we conclude the parameters for the

separate model, i.e. holding g fixed, are underidentified. Reilly (1995)’s rank rule could

be used to obtain the same conclusion for the separate model. Otherwise, considering

the normal equations in P altogether leads to an R2 matrix of rank 7. Hence, R2 is of

full rank and an application of Theorem 2 shows that θ = (λ1,λ2,λ3,λ4,ς1,1,ς1,2,ς2,2) is

globally identified.

The examples just presented reassure the importance of Theorem 2 as a tool for

testing the identification status of θ in MCFA-SMN models under simple structure. In

Example 5 the theorem confirms the obvious identification of θ when the G = 2 groups

enter together in the model, also the test for both groups reduce to the rank test of
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Reilly (1995) for only the first group, g = 1 (a desired behavior since the parameters

in the first group are all identified and the second group, g = 2, does not add new

parameters to the complete model). Example 6 involves the analysis of an important

situation where the parameters of neither groups (g = 1 or g = 2) are fully identified but

complement each other to achieve global identification of θ . It is clear that the normal

equations related to group g = 2 give the information needed to identify ς1,1 and ς2,2 in

the other group. It is then obvious from the results of Example 4 that the single group

g = 1 is now in position to identify all of its remaining parameters, consequently leading

the parameters of group g = 2 to identification. Finally, Theorem 2 provides a easy and

computationally simple method that avoids direct manipulation of the normal equations

in a search to confirm parameter identification.

Still concerning the applications of Theorem 2, for a single group (G = 1), Reilly

(1995) brings a thorough discussion of his rank rule directed to partially identified pa-

rameters. The author states a second proposition that permits the application of the

rank rule to single out identified parameters in the model. Also the author discusses

the possibility of correlated parameters in the variance matrix of specific latent factors

when all parameters are identified and there exist more normal equation in P (here

considering G = 1) than free parameters in the model, i.e. the matrix R1 is of full rank

and has more rows than columns. In that case, normal equations can be freed from P,

what corresponds to make some ψ
(g)
i j different from zero in the system (2.9). We shall

not discuss those details for the MCFA-SMN model, although we assure they can be

successfully applied to the study of this class of models. For more information on this

topic, we refer the reader to the original source of Reilly (1995).

2.4 Estimation

As an inherently latent variable model, factor analysis naturally accommodates

itself in the framework of the Expectation-Maximization (EM) algorithm (DEMPSTER

et al., 1977; RUBIN and THAYER, 1982). The seminal work of Rubin and Thayer

(1982) on maximum likelihood estimation of factor analysis models via EM algorithm

popularized the method in this field of multivariate analysis, with recent studies still re-

vealing many good properties of their algorithm (ADACHI, 2013; HAYASHI and LIANG,

2014, among others). Variants of Rubin and Thayer (1982)’s EM algorithm have ap-
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peared in the literature with several purposes, including strategies to suit different sets

of constraints into the parameter matrices of factor analysis models (JAMSHIDIAN and

JENNRICH, 1994), to deal with non-normal response variables (MONTANARI and VI-

ROLI, 2010; ZHANG et al., 2014) and also in the scope of multiple factor analysis

models (DE VITO, 2016).

For the estimation of CFA models Rubin and Thayer (1982)’s algorithm restricts

the covariance of common latent factors to be diagonal or unconstrained, in which

cases the M-step of the algorithm has closed form. Jamshidian and Jennrich (1994)

propose a modified version of Rubin and Thayer (1982)’s algorithm to accommodate

linear restrictions on the covariance of common latent factors, although their solution

relies on numerical methods. In the multiple factor analysis models setting, our litera-

ture review has not shown any EM algorithm for confirmatory models.

We shall present an Expectation-Conditional-Maximization (ECM) algorithm, us-

ing the theory proposed by Meng and Rubin (1993), capable of estimating MCFA-SMN

models with a broad range of invariance between parameters in any of the G groups

being modeled. The proposed algorithm includes Rubin and Thayer (1982)’s algorithm

as a special case when G = 1 and the SMN distribution assumed for the MCFA-SMN

model coincides with the multivariate normal distribution. The algorithms of Zhang, Li,

and Liu (2014) for estimation of their TFA model and of De Vito (2016) for estimation of

their multi-study factor model also appears as special cases of our proposed algorithm

when viewing the MCFA-SMN as an exploratory factor analysis model.

2.4.1 ECM algorithm

In factor analysis the complete-data structure necessary for the EM algorithm is

achieved by treating the matrix of common latent factor as missing data (RUBIN and

THAYER, 1982). Although, in comparison to the traditional factor analysis formulation,

the MCFA-SMN model have its latent space expanded with the introduction of vectors

of independent mixing variables following a common positive univariate distribution.

Hence, in the MCFA-SMN setting the complete data results from the joint distribution

of (Yig,Zig,Uig), where g ∈ {1, . . . ,G} indexes the group where the i-th unit belong. From

the stochastic representation given in Definition 1, the joint distribution of (Yig,Zig,Uig)
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can be hierarchically represented as

Yig|Zig = zig,Uig = uig ∼ Npg

(
µg +Λgzig,

1
uig

Ψg

)
,

Zig|Uig = uig ∼ Nkg

(
0,

1
uig
ζg

)
,

Uig ∼ H(·|ν), g = 1, . . . ,G.

(2.13)

A complete-data sample from (Yig,Zig,Uig) is denoted by y(c)ig = (y>ig,z
>
ig,uig)

> and

the vector of all complete-observations is denoted by y(c) = (y(c)>11 , . . . ,y(c)>n11 , . . . ,y(c)>1G ,

y(c)>nGG )>. Hence, from representation (2.13), we deduce the complete-data log-likelihood

as

`c(θ) =
G

∑
g=1

[
`
(g)
λ ,ψ(θ)+ `

(g)
ς (θ)

]
+

G

∑
g=1

ng

∑
i=1

logH(uig|ν). (2.14)

where the last term is a constant, since ν is known by assumption, and the quantities

`
(g)
λ ,ψ(θ) and `

(g)
ς (θ) are defined, for g = 1, . . . ,G, in term of the statistics

S
(g)
uy =

ng

∑
i=1

uigyigy>ig, S
(g)
uz =

ng

∑
i=1

uigzigz>ig, S
(g)
uzy =

ng

∑
i=1

uigzigy>ig (2.15)

as

`
(g)
λ ,ψ(θ) = tr

(
Ψ−1

g ΛgS
(g)
uzy

)
− 1

2
tr
(
Λ>g Ψ−1

g ΛgS
(g)
uz

)
− 1

2
tr
(
Ψ−1

g S
(g)
uy

)
−

ng

2
log |Ψg| (2.16)

and

`
(g)
ς (θ) =−1

2
tr
(
ζ−1

g S
(g)
uz

)
−

ng

2
log |ζg|. (2.17)

The Q-function is defined as the expectation of the complete-data log-likelihood

taken with respect to the conditional distribution of the missing data given the observed

data and a previously known vector θ (k), the update of θ in the (k−1)-th iteration of the

algorithm (MENG and RUBIN, 1993). Define EZ,U |Y,θ (k)(·), the expectation taking with

respect to the conditional distribution of the latent variables given the observed data.

Hence, the Q-function results as

Q(θ |θ (k)) =
G

∑
g=1

[
ˆ̀(g)
λ ,ψ(θ)+

ˆ̀(g)
ς (θ)

]
+

G

∑
g=1

ng

∑
i=1

logH(uig|ν), (2.18)
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where ˆ̀(g)
λ ,ψ(θ) =EZ,U |Y,θ (k)

[
`
(g)
λ ,ψ(θ)

]
and ˆ̀(g)

ς (θ) =EZ,U |Y,θ (k)

[
`
(g)
ς (θ)

]
.

The Q-function defined in (2.18) uses the conditional distribution of (Zig,Uig)|Yig =

yig,θ = θ (k), g = 1, . . . ,G. The expectation taken with respect to the desired joint dis-

tribution can be simply obtained using the properties of conditional expectations given

by ∫
∞

−∞

∫
∞

0
zu fZ,U |Y,θ (k)(z,u)dudz =

∫
∞

−∞

z
[∫ ∞

0
u fU |Y,θ (k)(u)du

]
fZ|U,Y,θ (k)(z)dz. (2.19)

The conditional distribution of Zig|Uig = uig,Yig = yig,θ = θ (k), g = 1, . . . ,G, could be

derived from the known conditional distributions presented in (2.13) together with an

application of the Bayes’ theorem. Let Λ̂g = Λg(θ
(k)), Ψ̂g = Ψg(θ

(k)) and ζ̂g = ζg(θ
(k)),

then

Zig|Yig = yig,Uig = uig,θ = θ
(k) ∼ Nkg

(
C−1

g big,
1

uig
C−1

g

)
, (2.20)

where

C−1
g =

(
Λ̂>g Ψ̂−1

g Λ̂g + ζ̂
−1
g

)−1
(2.21)

and

big = Λ̂>g Ψ̂−1
g yig. (2.22)

Similarly, the conditional distribution of Uig|Yig = yig,θ = θ (k), g = 1, . . . ,G, stems

from the Bayes’ theorem, using the fact that Yig|Uig = uig,θ = θ (k) is normally distributed.

In the following, we show the expectation EU |Y,θ (k)(Uig) that results for the SMN distri-

butions presented in Subsection 1.4.2 and that could be assumed for Yig in the MCFA-

SMN model, g = 1, . . . ,G,.

• Yig ∼ tpg(0,Σg,ν):

EU |Y,θ (k)(Uig) =
pg +ν

ν +d2(θ (k),yig)
, (2.23)

• Yig ∼ SLpg(0,Σg,ν):

EU |Y,θ (k)(Uig) =
2

d2(θ (k),yig)

Γ

( pg

2
+ν +1,d2(θ (k),yig)

)
Γ

( pg

2
+ν ,d2(θ (k),yig)

) , (2.24)
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• Yig ∼ CNpg (0,Σg,ξ ,γ):

EU |Y,θ (k)(Uig) =

1−ξ +ξ γ(pg/2)+1 exp
(

1
2
(1− γ)d2(θ (k),yig)

)
1−ξ +ξ γ pg/2 exp

(
1
2
(1− γ)d2(θ (k),yig)

) , (2.25)

where d2(θ (k),yig) = y>igΣ
−1
g (θ (k))yig and Γ(a,b) =

∫ b
0 ta−1e−tdt is the incomplete gamma

function. The results above are also presented by Ferreira, Lachos, and Bolfarine

(2016), where it is considered a more general probabilistic context involving skewed

SMN distribution.

Yet, another useful result present by Ferreira, Lachos, and Bolfarine (2016) is the

probabilistic distribution of the quantity d2(θ (k),yig) given the distribution of the inde-

pendently observed random variables Yig. According to Ferreira, Lachos, and Bolfarine

(2016) the following results are valid:

• If Yig ∼ Npg(0,Σg), then

d2(θ (k),yig)∼ χ
2
pg
, (2.26)

• If Yig ∼ tpg(0,Σg,ν), then

d2(θ (k),yig)∼ pg×Fpg,ν , (2.27)

• If Yig ∼ SLpg(0,Σg,ν), then

P
(

d2(θ (k),yig)< r
)
= P

(
χ

2
pg
< r
)
−

2νΓ(ν + pg/2)
rνΓ(p/2)

P
(

χ
2
2ν+pg

< r
)
, (2.28)

• If Yig ∼ CNpg (0,Σg,ξ ,γ):

P
(

d2(θ (k),yig)
)
= ξP

(
χ

2
pg
< γr

)
+(1−ξ )P

(
χ

2
pg
< r
)
, (2.29)

where χ2
δ

is the chi-square distribution with degree of freedom equals to δ and Fα,β is

the F distribution with degrees of freedom equal to α and β .

Applying the conditional expectation property (2.19), it can be shown the statis-

tics defined in (2.15) have expectation taken with respect to the joint distribution of
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(Zig,Uig)|Yig = yig,θ = θ (k), g = 1, . . . ,G, given by

Ŝ
(g)
uy =

ng

∑
i=1

EU |Y,θ (k)[Uig]yigy>ig, (2.30)

Ŝ
(g)
uz = ngC

−1
g +

ng

∑
i=1

[
EU |Y,θ (k)[Uig]C

−1
g bigb>igC

−1
g

]
, (2.31)

Ŝ
(g)
uzy =

ng

∑
i=1

EU |Y,θ (k)[Uig]C
−1
g bigy>ig, (2.32)

where C−1
g and big are defined in (2.21) and (2.22).

Hence, the expected values that enter in the definition of the Q-function (2.18) are

simply given by

ˆ̀(g)
λ ,ψ(θ) = tr

(
Ψ−1

g ΛgŜ
(g)
uzy

)
− 1

2
tr
(
Λ>g Ψ−1

g ΛgŜ
(g)
uz

)
− 1

2
tr
(
Ψ−1

g Ŝ
(g)
uy

)
−

ng

2
log |Ψg| (2.33)

and

ˆ̀(g)
ς (θ) =−1

2
tr
(
ζ−1

g Ŝ
(g)
uz

)
−

ng

2
log |ζg|. (2.34)

The conditional maximization step (CM-step) of the ECM algorithm operates on

a set G = {gs(θ) : s = 1, . . . ,S} of functions gs(·) that constrain the parameter of interest

for estimation, θ . The functions defined in G partition θ in S parts: θ (1), . . . ,θ (S). That

way, in the (k−1)-th iteration of the ECM algorithm the aim of the CM-step is to find a

value of θ
(s)
k , s ∈ {1, . . . ,S}, such that

Q(θ
(s)
k |θk−1)≥Q(θ |θk−1) with θ ∈ {θ ∈Θ : gs(θ) = gs(θ

(−s))}, (2.35)

where θ (−s) is the vector θ with the elements corresponding to its part θ (s) omitted.

The ECM algorithm will converge to the unconstrained maximum of the log-

likelihood (2.5) only if a property of G, called by Meng and Rubin (1993) as the space

filling property, is verified. Consider gs(·) differentiable and with gradient ∇gs(θ) having

full rank at θ in the interior of Θ, s = 1, . . . ,S. Then, according to Meng and Rubin (1993)

the set G will be space filling if

J(θ) =
S⋂

s=1

Js(θ) = {0}, (2.36)
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where Js(θ) = {∇gs(θ)λ : λ ∈Rds} is the column space of the gradient of gs(θ) and ds is

the dimentionality of gs(θ). If G is space filling, then it is guaranteed that at any iteration

the ECM algorithm will be free to search the parameter space in any direction (MENG

and RUBIN, 1993). In the following, we elaborate a set of constraints G over θ that is

space filling.

Let a finite sequence (vs)s∈S be called a partition of a vector v if v = (vs)s∈S and

the length of v equals the length of (vs)s∈S. We shall partition θ in two levels. The first

level is θ = (θλ ,θψ ,θς ), where θλ , θψ and θς are such that for any g∈ {1, . . . ,G} Λg(θ) =

Λg(θλ ), Ψg(θ) = Ψg(θψ) and ζg(θ) = ζg(θς ). Since θ has no repeated elements, θλ ,

θψ and θς does not share any of its elements between them. The second level of the

partition operates over θλ , θψ and θς and is generically defined as

θα =
(
θα(h)

)
h∈Hα

, (2.37)

where α is an index with possible labels λ , ψ or ς and Hα is a family set over {1, . . . ,G}

with its elements being possibly sets with at least one element, but the elements of

Hα must not have itself the empty set as an element. In (2.37), if h ∈Hα is given, the

element θα(h) is a vector comprised by the parameters in θα that are shared by groups

indexed in h. We ought to define Hα so that it avoids inconsistencies in the CM-steps

of the ECM algorithm. For that being so, Hα must have elements that are subset of

groups’ index with no intersection between subsets, that guarantees
(
θα(h)

)
h∈Hα

is in

fact a partition of θα . Finally, the elements of Hα must not have the empty set as an

element in order to avoid the meaningless situation where θα(h∅) occurs, with ∅ ∈ h∅

and h∅ ∈Hα .

Let θ be a p-dimensional vector of parameters partitioned as in (2.37) and θ(hα ),

of length r ≤ p, hα ∈Hα , be one of its parts. The vector θ can be explicitly expressed

in terms of θ(hα ) as

θ = P>(hα )
Q(hα )θ(hα )+P

>
(hα )

W(hα )θ(−hα ). (2.38)
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where the special matrices P(hα ), Q(hα ) and W(hα ) have the following properties

P(hα )θ =

 θ(hα )

θ(−hα )

 , Q(hα ) =

 Ir

0(p−r)×r

 , W(hα ) =

0r×(p−r)

Ip−r

 , (2.39)

and θ(−hα ) corresponds to some known reordering of θ devoid of its sub-vector θ(hα ).

From Equation (2.38) it is immediate that the partial derivative of θ with respect

to θ(hα ), for some hα ∈Hα , is given by

∂θ

∂θ>
(hα )

= P>(hα )
Q(hα ). (2.40)

We now state a proposition with the aim of defining a set G of constraints over θ

and proving that it is space filling.

Proposition 2. The set G = {g(hα )(θ) = θ(hα )|α ∈ {λ ,ψ,ς},h ∈Hα} is space filling.

Proof. Let α be fixed and hα ∈Hα . From Equation (2.38) it can be seen that

g(hα )(θ) =Q
>
(hα )

P(hα )θ and g(−hα )(θ) =W
>
(hα )

P(hα )θ .

Hence, their gradients are

∇g(hα )(θ) =Q
>
(hα )

P(hα ) and ∇g(−hα )(θ) =W
>
(hα )

P(hα ).

The column spaces of ∇g(hα )(θ) and ∇g(−hα )(θ) are certainly orthogonal comple-

ments. Hence, any subspace of the column space of ∇g(−hα )(θ) will also be orthogonal

to ∇g(hα )(θ). Repeating that same process for all parts of θ shows that G fulfills the

sufficient conditions for being space filling, as defined by Meng and Rubin (1993).

Before presenting the ECM algorithm, we give the necessary derivatives for stat-

ing the CM-steps. Consider hλ ∈Hλ , hψ ∈Hψ and hς ∈Hς , the desired partial deriva-

tives of the Q-function are the following

∂Q(θ |θ (k))

∂θ>
(hλ )

= ∑
g∈hλ

∂Q(θ |θ (k))

∂vec(Λg)>
∂vec(Λg)

∂θ>
(hλ )

(2.41)
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∂Q(θ |θ (k))

∂θ>
(hψ )

= ∑
g∈hψ

∂Q(θ |θ (k))

∂vec(Ψg)>
∂vec(Ψg)

∂diag(Ψg)>
∂diag(Ψg)

∂θ>
(hψ )

(2.42)

∂Q(θ |θ (k))

∂θ>
(hς )

= ∑
g∈hς

∂Q(θ |θ (k))

∂vec(ζg)>
∂vec(ζg)

∂vech(ζg)>
∂vech(ζg)

∂θ>
(hς )

. (2.43)

The further development of the derivatives in (2.41), (2.42) and (2.43) depends

only on well known results of matrix calculus, which could be found in Magnus and

Neudecker (1985) and Magnus (2010). The final results are

∂Q(θ |θ (k))

∂θ>
(hλ )

= ∑
g∈hλ

vec
(
Ψ−1

g Ŝ
(g)
uzy

)>
P

(g)>
(hλ )

Q
(g)
(hλ )

−θ
>
(hλ ) ∑

g∈hλ

Q
(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗Ψ−1

g

)
P

(g)>
(hλ )

Q
(g)
(hλ )

− ∑
g∈hλ

vec(Λg)
>
(−hλ )

W
(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗Ψ−1

g

)
P

(g)>
(hλ )

Q
(g)
(hλ )

,

(2.44)

∂Q(θ |θ (k))

∂θ>
(hψ )

=
1
2 ∑

g∈hψ

[
vec

(
2ΛgŜ

(g)
uzy−ΛgŜ

(g)
uz Λ>g − Ŝ

(g)
uy

)>
+ngvec(Ψg)

>
]

×
(
Ψ−1

g ⊗Ψ−1
g
)
BpgP

(g)>
(hψ )

Q
(g)
(hψ )

,

(2.45)

∂Q(θ |θ (k))

∂θ>
(hς )

=−1
2 ∑

g∈hς

[
ngvec(ζg)

>−vec
(
Ŝ
(g)
uz

)>](
ζ−1

g ⊗ζ−1
g
)
DkgP

(g)>
(hς )

Q
(g)
(hς )

, (2.46)

where the matrices Bpg, of order pg
2× pg, and Dkg, of order kg

2× kg(kg +1)/2, are the

diag matrix and duplication matrix, respectively, defined in Appendix A.

The ECM algorithm for the estimation of MCFA-SMN models will restrict attention

to those models where θ is constrained according to the functions composing the set

G defined in Proposition 2. That being so, consider an initial value θ (0) in the parameter

space, the k-th iteration of the algorithm is defined as follows

• Initialization: Based on the results of Adachi (2013), consider as initial values

for the parameters associated with each group g ∈ {1, . . . ,G} the estimates of an

orthogonal factor analysis model. If the resultant estimates are proper, use them

to initialize the matrices Λg(θ
(0)), Ψg(θ

(0)) and ζg(θ
(0)), with its fixed parameters

substituted by their respective pre-assigned values;

• E-step: At the k-th iteration, compute the Q-function using its definition (2.18)
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together with Equations (2.33) and (2.34);

• CM-step: Let hλ ∈Hλ , hψ ∈Hψ and hς ∈Hς . Update each part of θ (k) using the

expressions

θ
(k+1)>

(hλ )
= ∑

g∈hλ

{[
vec

(
Ψ̂−1

g Ŝ
(g)
uzy

)>
−vec

(
Λ̂g
)>
(−hλ )

W
(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗ Ψ̂−1

g

)]

× P (g)>
(hλ )

Q
(g)
(hλ )

}[
∑

g∈hλ

Q
(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗ Ψ̂−1

g

)
P

(g)>
(hλ )

Q
(g)
(hλ )

]−1

,

(2.47)

θ
(k+1)>

(hψ )
=−

(
∑

g∈hψ

1
ng

)
∑

g∈hψ

vec
[(

2Λ̂gŜ
(g)
uzy− Λ̂gŜ

(g)
uz Λ̂>g − Ŝ

(g)
uy

)>]
P

(g)>
(hψ )

Q
(g)
(hψ )

, (2.48)

θ
(k+1)>

(hς )
= max

θ(hς )

{
−1

2 ∑
g∈hς

tr
(
ζ−1

g S
(g)
uz

)
+ng log |ζ−1

g |

}
. (2.49)

• Stopping rule: Stop the algorithm if
√

∑
r
i=1(θ

(k+1)
i −θ

(k)
i )2 < ε, for some small

positive constant ε, usually ε = 10−6.

In the CM-step it remains to prove the existence of the matrix inverse appearing

in the first update Equation (2.47). The next proposition will serve to this task.

Proposition 3. For hλ ∈Hλ , the matrix ∑g∈hλ
Q

(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗Ψ−1

g

)
P

(g)>
(hλ )

Q
(g)
(hλ )

is

non-singular.

Proof. Let g be fixed in {1, . . . ,G}. Lemma 1 of Adachi (2013) proves that Ŝ(g)
uz is positive

definite. Since Ψ−1
g is guaranteed to be proper, then Ŝ(g)

uz ⊗Ψ−1
g is positive definite.

Consequently, Q(g)>
(hλ )

P
(g)
(hλ )

(
Ŝ
(g)
uz ⊗Ψ−1

g

)
P

(g)>
(hλ )

Q
(g)
(hλ )

> 0. Since it occurs for any g, the

validity of the proposed result is verified.

The starting values for the ECM algorithm are motivated by a set of theorems

proposed by Adachi (2013), which states that if in a CFA model (G = 1) the matrices

Ŝ
(1)
uy , Ψ1(θ

0) and ζ(θ 0) are positive definite, at convergence the EM algorithm of Rubin

and Thayer (1982) will generate only proper solutions. That is to say, there would not be

negative variances in Ψ1(θ̂), known in the literature as Heywood cases (HAYASHI and

LIANG, 2014), and ζ(θ̂) would be positive-definite. When Ŝ(1)
uy is non-negative definite

the EM algorithm of Rubin and Thayer (1982) could converge to a θ̂ such that some

diagonal elements of Ψ1(θ̂) equal zero, although being never negative. The theorems

in Adachi (2013) are proved only for the case G = 1. Although, it is intuitive that it would



43

work for MCFA-SMN models, with the conditions on the theorems of Adachi (2013)

extended to positive definiteness or non-negative definiteness of Ŝ(g)
uy , g = 1, . . . ,G.

2.5 Standard errors

In this section we shall present two methods for estimation of standard errors

of θ̂ in the MCFA-SMN model. The first method uses the empirical Fisher information

matrix, as proposed by Meilijson (1989) in the context of the EM algorithm. The second

method is a numerical approximation of the observed information matrix called central

difference approximation used in factor analysis by Jamshidian (1997).

Let H(θ) be the Fisher information of θ . Meilijson (1989) proposed to use the

empirical Fisher information, denoted by Ĥ(θ), as a consistent estimate of H(θ). Based

on a MCFA-SMN model, Ĥ(θ) is given by

Ĥ(θ) =
G

∑
g=1

ng

∑
i=1

s(yig|θ)s(yig|θ)>+
G

∑
g=1

1
ng

S(yg|θ)S(yg|θ)>, (2.50)

where yg is the vector of observation for the g-th group, s(yig|θ) is the score of the i-th

individual in the g-th group and S(yg|θ) = ∑
ng
i=1 s(yig|θ). Observe that differently from

the Fisher Information, H(θ), the empirical Fisher information, Ĥ(θ), does not involve

second order derivatives.

Additionally, considering the maximum likelihood estimate θ̂ we have

Ĥ(θ̂) =
G

∑
g=1

ng

∑
i=1

s(yig|θ̂)s(yig|θ̂)>, (2.51)

and the standard errors of θ̂ will be approximated by the square root of the diagonal of

Ĥ
−1
(θ̂).

Using the results of Meilijson (1989) on the properties of the EM algorithm, we

have that, for θ0 in the parametric space Θ, the following relation holds

∂

∂θ
Q(θ |θ0)

∣∣∣
θ=θ0

=
G

∑
g=1

S(y|θ0). (2.52)

A comment made by Meilijson (1989), and more widely discussed by Jamshidian

(1997), is that H(θ) can be numerically approximated using a process involving suc-

cessive evaluations of the score function (2.52) at perturbations of the estimate θ̂ . Let
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θ̃ be the estimate θ̂ with its k-th element perturbed by a small amount ε. According to

Meilijson (1989) the expression

1
ε

G

∑
g=1

[
S(y|θ̃)−S(y|θ̂)

]
, (2.53)

will approximate the k-th column of H(θ).

Jamshidian (1997) restated the result (2.53) in the following way: define the col-

umn vector d j(θ) as

d j(θ) =
g(θ + ε je j)−g(θ − ε je j)

2ε j
, j = 1, . . . ,q, (2.54)

where g(θ) is the gradient of the log-likelihood `(θ) evaluated at θ , e j is a vector with

all its entries equal to zero except for the j-th entry, which is equal to one, ε j is a small

number and q is the dimension of θ . Hence, according to Jamshidian (1997) the Fisher

information matrix H(θ) is approximated by

H̃(θ) =
D(θ)+D>(θ)

2
, (2.55)

where D(θ) is the q×q matrix with columns equal to d j(θ). As mentioned by Lin et al.

(2014), D(θ) can be used to approximate H(θ), although there are situations where

D(θ) could result in a non-symmetrical matrix. Hence, (2.55) is preferable.

Meilijson (1989) stated that the choice of value for ε j should be guided by the

rule of thumbs of the differential calculus. Jamshidian (1997) and Lin et al. (2014)

suggested to use ε j = max(η ,η |θ j|), with η = 10−4.

Equations (2.50) and (2.55) make use of relation (2.52) to approximate H(θ).

Hence the derivative of the Q-function, presented in Equations (2.41), (2.42) and

(2.43), can be readily used to obtain approximations of the standard errors of θ̂ .
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3 Simulation

3.1 Resumo da seção

Nesta sessão apresentamos um estudo de simulação para verificar as propri-

dades dos estimadores dos parâmetros do modelo MCFA-SMN sob amostras finitas.

O estudo de simulação foca nos modelos MCFA-N, MCFA-t, MCFA-CN e MCF-SL,

com fatores latentes seguindo distribuição normal, t-Student, normal contaminada e

slash, respectivamente. Além disso, nosso estudo de simulação também visa avaliar

a performance dos erros padrão obtidos de acordo com os dois métodos apresentados

na Subsessão 2.5.

3.2 Simulation design

In this section we shall present results of Monte Carlo simulation studies designed

to evaluate the finite sample performance of parameter estimates obtained through

the estimators developed in Section 2.4. All simulations were developed with the R

software 3.5.0 (R CORE TEAM, 2018). The codes used in the simulation are available

by request to the authors.

We use a real data set to guide the model structure to be simulated and also to

setup the true values for the parameters in the model. Additionally, we discuss a kind

of factor indeterminacy that is an issue of interest in simulation of FA models, namely,

the label switch and sign change of common latent factors.

3.2.1 Data set

In order to simulate interpretable FA models we based our simulation study on a

real data set commonly appearing in statistical papers on the subject, as for example:

Meredith (1964), Jöreskog (1971), Sörbom (1974), Zhong and Yuan (2011) and Lai and

Zhang (2017). To motivate the choice of parameter set and factor structure used in the

simulations, we first give a brief description of the data set used, which was originally

described by Holzinger and Swineford (1939).

Holzinger and Swineford (1939) collected data on 301 students enrolled in two

schools, Pasteur (n= 156) and Grant-White (n= 145). The students were from different

socio-economic status, with the Pasteur School enrolling student from families with low

income and the Grant-White enrolling students from families of middle class. A test
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comprising 25 items was administered to each one of the 301 students, with the aim of

measuring 5 latent factors.

Based on Holzinger and Swineford (1939)’s study, Jöreskog (1971) selected 9

items considered indicators of three common latent factors, interpreted as space, ver-

bal and memory factors. Jöreskog (1971) advocated that a MCFA model for two groups

and with invariant Λg, ζg and Ψg, g = 1,2, would fit well the data. Additionally, the au-

thor proposed a simple structure for the loading matrix and set the metric of observed

variables by fixing the first loading of each column of the loading matrix equal to one.

That way, the model matrices were defined as

Λg =



1 0 0

λ2,1 0 0

λ3,1 0 0

0 1 0

0 λ5,2 0

0 λ6,2 0

0 0 1

0 0 λ8,3

0 0 λ9,3



, ζg =


ς1,1

ς2,1 ς2,2

ς3,1 ς3,2 ς3,3

 , Ψg = diag(ψ j, j)
9
j=1, (3.1)

where g = 1,2.

For g = 1,2, consider kg = 3 the number of latent factors and pg = 9 the number

of observed variables entering in the specification of the CFA model related to the g-th

group.

The identification of parameters in the MCFA model defined by Equation (3.1)

can be proved by means of Theorem 2. This theorem guarantees that the model’s

parameters are identified when the Jacobian matrix R2, defined in Equation (2.10), is

of full column rank. For the aimed model, the matrix R2 is of dimension 72×15 and has

rank equals to 15, hence R2 is of full column rank and, by Theorem 2, the MCFA model

defined in (3.1) has all of its parameters identified.

We estimated the parameters of the model proposed by Jöreskog (1971) using

the functionalities of the R package lavaan (ROSSEEL, 2012), which includes a func-

tion for maximum likelihood estimation of MCFA models and also brings Holzinger and
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Swineford (1939)’ data set. The point estimates we obtained for the parameters are

given in Table 1.

Table 1: Parameter estimates for the MFCA model of Jöreskog (1971).

Λ ζ Ψ
Parameter Estimate Parameter Estimate Parameter Estimate

λ2,1 0.6048 ς1,1 0.5465 ψ1,1 0.4469
λ3,1 0.8455 ς2,1 0.3084 ψ2,2 0.7935
λ5,2 1.0060 ς3,1 0.1968 ψ3,3 0.6027
λ6,2 0.9873 ς2,2 0.7033 ψ4,4 0.2901
λ8,3 1.2306 ς3,2 0.1670 ψ5,5 0.2816
λ9,3 1.1066 ς3,3 0.3439 ψ6,6 0.3079

ψ7,7 0.6497
ψ8,8 0.4725
ψ9,9 0.5722

3.2.2 Scenarios for simulation

The models we assumed in our simulation study follow the same latent struc-

ture of the model proposed by Jöreskog (1971) for analyzing Holzinger and Swineford

(1939)’ data set. That is to say, a simultaneous factor analysis for G = 2 groups with

invariant model matrices structured as in (3.1). We considered four different scenarios

for simulation, which are described below:

• MCFA-N: Latent factors following a multivariate normal distribution;

• MCFA-t: Latent factors following a multivariate t-Student distribution with ν = 4;

• MCFA-CN: Latent factors following a multivariate contaminated normal distribu-

tion with ξ = 0.5 and γ = 0.5;

• MCFA-SL: Latent factors following a multivariate slash distribution with ν = 4.

In all the above scenarios, the choices of values for the parameters indexing

the distribution of the mixing variable (that is to say, the choices of ν , ξ and γ) was

made to obtain SMN distributions with considerably heavier tails than the normal dis-

tribution. Each model in the scenarios above has 21 parameter with true values

set equal to the estimates obtained for the model of Jöreskog (1971) and displayed

in Table 1. For each scenario we generated artificial samples with sizes fixed at

n = 200,400,600,800 and 1000. The number of replications for each sample size was
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R = 5000. The samples for the MCFA-SMN models were generated using the hierar-

chical structure

Yig|Zig = zig,Uig = uig ∼ Npg

(
µg +Λgzig,

1
uig

Ψg

)
,

Zig|Uig = uig ∼ Nkg

(
0,

1
uig
ζg

)
,

Uig ∼ H(·|ν), g = 1,2,

(3.2)

with the multivariate normal samples being generate using the R package mvtnorm

(some description of the package can be obtained in Amatya and Demirtas (2015)).

The initial values for the parameters in Λg, Ψg and ζg, g = 1,2 were taken as the

estimates of parameters in two separate exploratory factor analysis under normality,

hence the ζg were taken as the identity matrix of order 3×3, g = 1,2. The ECM algo-

rithm stopped when the k-th and (k+ 1)-th update of θ were such that the euclidean

distance
√

∑
21
i=1(θ

(k+1)
i −θ

(k)
i )2 was less than 10−6, where θi is the i-th entry of θ .

3.2.3 Factor indeterminacy

Here we call attention for an important matter in simulation of FA models, namely,

the indeterminacy of common latent factors. This problem is not an issue in our sce-

narios of simulation, since our model have fully identified parameters and the rotational

indeterminacy of the factor loading matrices is resolved with the identification restriction

we imposed for the simulated models (PEETERS, 2012).

The uniqueness problem presented in Definition 2 posits an issue for simulation

studies of CFA models. According to Definition 2, there exist equivalent solutions to

the parameters in the loading matrix and common latent factors’ covariance matrix

that differ only by an orthogonal rotation or sign change. Those sources of factor

indeterminacy were studied by Myers et al. (2016).

Myers et al. (2016) studied that problem of factor indeterminacy in the context

of simulation and proposed to choose the solution with smallest Mean Square Error

(MSE). Since in simulation studies the true values of parameters are known, its is

possible to list all equivalent solutions that arise by changing signs or reordering the

rows and columns of common latent factor’s covariance matrix and then calculate their

associated MSE. Myers et al. (2016) developed an R package called REREFACT that
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execute this task.

3.3 Results

In this section we present the results of simulation for the four MCFA-SMN se-

lected models, namely, the MCFA-N, MCFA-t, MCF-CN and MCFA-SL models. The

simulation focus in the analysis of bias, Mean Square Error (MSE) and Monte Carlo

standard errors (MC SE) of the proposed estimators as well as in the performance of

standard errors and confidence intervals obtained by means of the methods described

in Subsection 2.5, namely, the Central Difference Method (CDM) and the Empirical

Fisher Information (EFI).

In order to simplify the description of the simulation results we shall adopt the fol-

lowing nomenclature: MSE = mean square error, MC SE = Monte Carlo standard error,

CDM SE = average standard error obtained using the central difference method, EFI

SE = average standard error obtained using the empirical Fisher information matrix,

Prob. CDM = coverage probability of 95% confidence interval (CI) constructed through

the central difference method, Prob. EFI = coverage probability of 95% CI obtained

through the empirical Fisher information matrix.

3.3.1 Finite sample properties

In order to evaluate the finite sample properties of the estimators developed in

Section 2.4 we calculated the bias and MSE of the estimator considering simulations

with sample size varying as n = 200,400,600,800 and 1000. These quantities were cal-

culated using the following formulas:

Bias(θ) =
1
R

R

∑
r=1

(
θ̂r−θ

)
(3.3)

and

MSE(θ) =
1
R

R

∑
r=1

(
θ̂r−θ

)2
, (3.4)

where R = 5000 is the number of replications used for each sample size in the simula-

tions and θ̂r is the estimate of θ in the r-th replicate of size n. For the calculations using

the formulas above, the true values assumed for θ are necessary and they are given

in Table 1.
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The bias of the estimators was estimated using Equation (3.3) under each of the

four scenarios of simulation described in Subsection 3.2.2. The results are summarized

in Figure 1, which was made taking as reference the values printed in Table 10 of

Appendix B. The graphs of Figure 1 allow to conclude that, for the four CFA-SMN

models considered in the simulations, the estimators’ bias appears to decrease with

increasing sample sizes. This tendency is more markedly seen for the estimators of

the parameters comprising the error’s variance matrix and common factors’ covariance

matrix. The bias of estimators related to the parameters in the loading matrix appears

to approach zero, but not so fast as happens with the remaining parameters.
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Figure 1: Bias

It is important to call attention to some points that were not plotted in the graphs

of Figure 1, relating to the bias of the estimators of loading parameters. That hap-

pens only for results os simulations with sample size equals to 200. Concerning only

this sample size, for the scenarios of simulation involving the MCFA-N, MCFA-CN and

MCFA-SL models, the loading parameters λ83 and λ93 are not plotted in Figure 1. The

same happens for the parameters λ52, λ62, λ83 and λ93 for the simulations involving the

MCFA-t model. The bias associated with those parameters can be seen in Table 10.
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Their estimation lead to large bias in samples of size 200. They were omitted in order

to facilitate the interpretation of the graphs in Figure 1. However, that peculiar result

points out possible issues for estimation of MCFA-SMN models in samples of size as

small as 200 observations per group g = 1, . . . ,G. Although, further studies are needed

to fully understand the effect of sample size in parameter estimation in the context of

MCFA-SMN models.
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Figure 2: Mean square error (MSE)

The simulation results concerning the MSE of the estimators are summarized

in Figure 2, which is based on the values printed in Table 11 of Appendix B. From

the graphs of Figure 2 it can be asserted that the estimators’ MSE decreases with

increasing sample size. Again, it has a lower decrease for the loading parameters. As

happened with the estimators’ bias, in the simulations with samples of size equals to

200 some loading parameters presented high MSE. Those parameters are the same

ones pointed out earlier in the text when analyzing the estimators’ bias. Altogether, the

results of Figure 2 give support to the consistency of estimators obtained in our study,

a desired property since the proposed estimators are maximum likelihood estimators.
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3.3.2 Standard errors and confidence intervals

For studying the behavior of standard errors of estimates obtained with the esti-

mators of Section 2.4 we considered the CDM and EFI methods for approximation of

the Fisher information. For each sample size n = 200,400,600,800 and 1000 in the sim-

ulations, the average standard errors obtained through the CDM and EFI methods were

calculated. The results were compared with the Monte Carlo standard error, which was

calculated using the formula below:

MC SE(θ̂) =

√√√√ 1
R

R

∑
r=1

θ̂ 2
r −

(
1
R

R

∑
r=1

θ̂r

)2

, (3.5)

where R = 5000 is the number of replications used for each sample size in the simula-

tions and θ̂r is the estimate of θ in the r-th replicate of size n.

In Section 2.5 it was proposed two ways of obtaining standard errors for estimates

of parameters in MCFA-SMN models. Both methods were based on approximations of

the Fisher information. The EFI method proposes as standard errors the square root

of the diagonal elements of the empirical Fisher information matrix, while the CDM

method makes it using a numerical approximation of the Fisher information. For each

scenario and sample size in our simulation study the standard errors obtained through

the EFI and CDM methods were assessed in all 5000 replications and its average value

were calculated and retained. Tables 13 and 14 of Appendix B bring those average

values based on the EFI and CDM methods, respectively.

In order to evaluate the performance of the standard errors obtained through both

methods we compared their average in the simulations with the Monte Carlo standard

errors calculated using Equation (3.5). Figure 3 pictures the behavior of the Monte

Carlo standard errors under estimation in the four MCFA-SMN models considered in

our study. It can be seen that the standard errors of estimates of all parameters became

smaller when sample size is increased. That consistency property is desired for the

proposed estimator and reassure the results for the estimators’ MSE described earlier

in the text. As occurred for the bias and MSE, some parameters in all MCFA-SMN

models study showed high Monte Carlo standard errors in simulations with samples of

size 200. The points corresponding to high Monte Carlo standard errors are omitted
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in Figure 3, it corresponds exactly to the same loading parameters described earlier in

the last section of the text.
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Figure 3: Monte Carlo standard error (MCSE)

The Monte Carlo standard errors serve as reference to study the adequacy of the

EFI and CDM as methods for generating standard errors for estimates of parameters

in MCFA-SMN models. It is expected that those standard errors behave similarly to

the ones generated with the Monte Carlo method, verifying its approximate magnitude

and the consistency property. Figures 4a and 4b depict the average standard errors

printed in Tables 13 and 14 of Appendix B, which refer to the EFI and CDM methods,

respectively. It can be seen in the Tables 13 and 14 that the magnitudes of the average

standard errors generated through the EFI method are very alike to the Monte Carlo

standard errors, although the CDM methods lead to standard errors somewhat smaller

then the Monte Carlo standard errors. The consistency property is observed for the

standard errors obtained through either method, EFI or CDM.

In accordance with the high MSE estimated for the loading parameters λ83 and

λ93, the standard errors for this parameters were also higher relatively to the others

loadings, considering the Monte Carlo, EFI and CDM standard errors. It can be ob-
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served in Tables 12, 13 and 14 of Appendix B that the set of loading parameters asso-

ciated with the second common latent factor, namely, λ52 and λ62, showed the smaller

standard errors. Among the parameters comprising the covariance matrix of common

latent factors, the variances ς11, ς22 and ς33 showed higher standard errors, calculated

using any of the three methods Monte Carlo, EFI or CDM.
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(b) CDM

Figure 4: Empirical Fisher information (EFI) and central difference method (CDM) standard errors.
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Figure 5: Empirical Fisher information (EFI) and central difference method (CDM) 95% confidence inter-
vals.

The probability coverage of 95% confidence intervals (CI) based on the standard

errors generated through the EFI and CDM methods are shown in Figures 5a and 5b.
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It can be seen that the EFI method leads to CI close to the nominal level of 95% confi-

dence, while the lower standard errors of the CDM method lead to CI with confidence

under the nominal level, mainly for the parameters in the covariance matrix of common

factors. The lower coverage of CI constructed using the CDM method can be attributed

to its respective smaller standard errors. To understand better this problem it is advised

a revision of the computer codes implemented to calculate the standard errors through

the CDM method.



56

4 Application

4.1 Resumo da seção

Neste capítulo apresentamos uma aplicação dos modelos MCFA-SMN. A apli-

cação é no campo da genética médica e utiliza dados reais de expressção gênica em

pacientes com câncer de pâcreas. Nós propomos um modelo de análise fatorial ex-

ploratório para múltiplos grupos a partir da expressão de 11 proteínas envolvidas na

regulação da matrix extracelular e do meio onde células tumorais se desenvolvem. Em

seguida, propomos um modelo confirmatório basado nos resultados da modelagem

anterior. Tanto na abordagem exploratória quanto na confirmatória, quatro modelos

MCFA-SMN são estimados, supondo-se fatores latentes com distribuição normal, t-

Student, normal contaminada e slash. O modelo confirmatório final é interpretado sob

a luz de descobertas científicas recentes na área de oncologia a respeito das molécu-

las inseridas no contexto da modelagem estatística.

4.2 Context of application

In oncology, the study of biological pathways involved in the regulation of gene

expression in tumor cells has been a central issue for understanding the pathological

dynamic of cancer. A biological pathway is a cascade of chemical and physical events

connecting molecules and cells in complex networks for the control of physiological

functions. In cancer, those networks are altered due to genetic changes that affects

the expression of genes in tumor cells (PONDER, 2001).

Since the expression of genes is intimately related to the concentration of its asso-

ciated polypeptide in the circulatory system, the measurement of proteins in the blood

and serum became the basic tool for gathering data towards the analysis and model-

ing of biological pathways (IACOB et al., 2016). Recently, the availability of powerful

technologies of high-throughput genomic data, e.g. RNA-seq and microarray, made

it possible to simultaneously analyze all molecules composing the transcriptome of a

cell, i.e. the set of all RNA molecules in the cell (PHAM et al., 2016).

As a result, scientists in the field of Medicine are now turning their attention to

the analysis of gene co-expression (IACOB et al., 2016; PHAM et al., 2016). Gene co-

expression refers to the interrelationship of genes for the co-regulation of their expres-
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sion levels, i.e. genes interacting together to activate or deactivate their transcription

into RNA in the cell (ROY et al., 2014).

4.3 Data set

In the following we shall present and analyze a data set from the field of oncology.

The variables comprising the data set are gene expressions measured with microar-

rays. The data set includes observations of two independent populations of tumor cells

coming from patients with pancreas cancer, where it is known the true allocation of

observations in each population. The two samples are denoted, respectively, as TCGA

(with sample size n= 146) and ICGCMICRO (with sample size n= 265). The TCGA and

ICGCMICRO data sets are of public domain and can be freely accessed from the bio-

conductor platform through the software R, by calling the package MetaGxPancreas.

The data set selected has measurements on the expression of hundreds of dis-

tinct genes, from which we have selected 11 target genes for our analysis based on the

current scientific knowledge on the dynamic of cancer cells in its microenvironment, the

extracellular matrix (CASEY et al., 2007; LI et al., 2013; FANG et al., 2014; GIALELI

et al., 2014; COX et al., 2015; GASCARD and TLSTY, 2016; JIA et al., 2016; HAMMER

et al., 2017). The proteins regulated by the chosen genes are listed in Table 2 below.

Table 2: Name of proteins associated with the 11 targeted genes.

Abbreviation Protein
COL3A1 Collagen, type III, alpha 1
COL10A1 Collagen, type X, alpha 1
COL11A1 Collagen, type XI, alpha 1
COL5A2 Collagen, type V, alpha 2
THBS2 Thrombospondin 2
PLAU Plasminogen activator, urokinase
PDGFRA Platelet-derived growth factor receptor, alpha polypeptide
PDGFRB Platelet-derived growth factor receptor, beta polypeptide
ACTA2 Actin, alpha 2
TIMP3 IMP metallopeptidase inhibitor 3
IGF1 Insulin-like growth factor 1 (somatomedin C)

Usually, data gathered in studies involving the measurement of gene expression

is available in the log2-transformed scale, this is true for several platforms commonly

used for processing biological molecules and assessment of gene expression levels

(TENG et al., 2013) (including the Affymetricx plataform, which was used to obtain the

data set under analysis in this section). Our first analytic decision was to investigate the

data set in its original scale, hence we transformed back the data applying the inverse
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of the logarithmic function with base 2. The next step was to standardize the data by

subtracting from each observed variable its sample mean and dividing it by its sample

standard deviation, a commonly used strategy for data analysis using factor analytic

models (MEHRA, 1973). Figures 6 and 7 show the sample distribution of each raw

gene expression after standardization.
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Figure 6: Standardized raw variables for the TCGA data set.

The two groups, TCGA and ICGCMICRO, have similar marginal distributions for

the standardized raw gene expressions. The presence of outliers in almost all variables

occurs in both groups, suggesting the need for probabilistic models with heavier tails

than the normal distribution. However, it can be seen a clear sign of right skewness in

both data sets.
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Figure 7: Standardized raw variables for the ICGCMICRO data set.
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An important issue in factor analysis is the determination of the number of com-

mon factors. A commonly used criterion for that aim is the rule of Kaiser that says

to retain only common factors whose eigenvalues are greater than one (KAUFMAN

and DUNLAP, 2000). Figure 8 shows the eigenvalues of the sample covariance ma-

trices observed for the TCGA and ICGCMICRO data sets. According to the Kaiser

rule it should be retained only two common factors in each of the groups, TCGA and

ICGCMICRO.
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Figure 8: Eigenvalues of the sample covariance matrices for the TCGA and ICGCMICRO data sets.

4.4 Exploratory model

Our fist attempt in modeling the covariance structure of the observed data set

was in estimating a exploratory multiple group factor analysis model, assuming the ob-

served variables follow a probability distribution in the SMN class. That action allowed

us to investigate the general behavior of the loading parameters without the need to

assume any prior knowledge about its configuration, except for the number of common

latent factors, which was fixed and equals to two (according to the criterion of Kaiser).

The model matrices are defined in 4.1, where each parameter is explicitly shown.

The identification of parameters in the exploratory model can be easily verified

with the help of Theorem 1 and Proposition 1. According to this theoretical results a

MCFA-SMN model having loading matrices with a triangular matrix of zeros form and

covariance matrices of common factors equal to the identity matrix will be identified as

long as the parameters λ
(g)
j, j , j = 1,2 and g = 1,2, are identified. In this application we

fixed the parameters λ
(g)
1,1 and λ

(g)
2,2 equals to 1, g = 1,2.
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Λg =



1 0

λ2,1 1

λ3,1 λ3,2

λ4,1 λ4,2

λ5,1 λ5,2

λ6,1 λ6,2

λ7,1 λ7,2

λ8,1 λ8,2

λ9,1 λ9,2

λ10,1 λ10,2

λ11,1 λ11,2



, ζg =

1 0

0 1

 , Ψg = diag(ψ j, j)
11
j=1, g = 1,2. (4.1)

In order to choose for the observed variables a particular probability distribution

in the SMN class we estimated MCFA-N, MCFA-t, MCFA-CN and MCFA-SL models.

For the MCFA-t and MCFA-SL the parameter ν , that is assumed fixed in our model

definition, was chosen by evaluation of the profile log-likelihood of ν in both models.

Figure 9 shows the results obtained. Hence, for the MCFA-t model the value of ν = 3

leads to the highest log-likelihood. In the case of MCFA-SL model the value of ν = 2 is

the one leading to the highest log-likelihood.
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Figure 9: Profile log-likelihood of ν in MCFA-t and MCFA-SL exploratory models.

For the MCFA-CN model, the parameters ξ and γ where also chosen by profil-

ing the log-likelihood at a grid of values ranging from 0.10 to 0.40 at spaces of size

0.05. This choice of grid was made assuming parameter values with two significant

decimal places would be close enough estimates to the actual parameter value in the

population. Although a larger grid was tried in the application, we show only the range
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of values previously mentioned. The results are shown Table 3. Hence, ξ = 0.20 and

γ = 0.20 leads to the largest log-likelihood in the chosen grid.

Table 3: Log-likelihood for a grid of values of ξ and γ in the MCFA-CN exploratory model

HH
HHHξ

γ 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 -4381.948 -4379.322 -4382.915 -4390.685 -4401.743 -4415.642 -4432.173
0.15 -4352.235 -4344.662 -4344.160 -4348.124 -4355.450 -4365.644 -4378.506
0.20 -4351.172 -4341.133 -4338.457 -4340.448 -4345.945 -4354.378 -4365.468
0.25 -4366.603 -4355.433 -4351.738 -4352.777 -4357.343 -4364.833 -4374.946
0.30 -4391.569 -4380.026 -4375.901 -4376.470 -4380.524 -4387.455 -4396.961
0.35 -4422.000 -4410.514 -4406.269 -4406.609 -4410.349 -4416.891 -4425.938
0.40 -4455.405 -4444.238 -4440.043 -4440.271 -4443.779 -4449.986 -4458.602

Including the MCFA-N model, we have chosen, based on the results of Figure

9 and Table 3, to maintain the models MCFA-t(ν = 3), MCFA-SL(ν = 2) and MCFA-

CN(ξ = 0.20, γ = 0.20). Table 4 shows the point estimates and estimates of standard

errors for the parameters in the four models. The standard errors were estimated using

the method of Meilijson (1989) based on the empirical Fisher information matrix.

Table 4: Point estimates and standard errors (in parenthesis) for the parameters in the exploratory
models: MCFA-N, MCFA-t(ν = 3), MCFA-CN(ξ = 0.20,γ = 0.20) and MCFA-SL(ν = 2).

Parameters MCFA-N MCFA-t MCFA-CN MCFA-SL
λ2,1 0.831 (0.144) 0.792 (0.178) 0.763 (0.193) 0.766 (0.242)
λ3,1 0.959 (0.038) 0.825 (0.041) 0.842 (0.038) 0.822 (0.042)
λ4,1 1.060 (0.027) 0.981 (0.026) 0.958 (0.027) 0.947 (0.026)
λ5,1 0.990 (0.031) 0.936 (0.032) 0.903 (0.037) 0.895 (0.035)
λ6,1 0.490 (0.077) 0.529 (0.051) 0.474 (0.060) 0.481 (0.055)
λ7,1 0.456 (0.133) 0.543 (0.164) 0.421 (0.172) 0.436 (0.208)
λ8,1 0.706 (0.089) 0.765 (0.097) 0.673 (0.098) 0.678 (0.113)
λ9,1 0.716 (0.063) 0.876 (0.055) 0.796 (0.055) 0.792 (0.057)
λ10,1 0.808 (0.052) 0.772 (0.061) 0.709 (0.064) 0.715 (0.070)
λ11,1 0.161 (0.110) 0.239 (0.094) 0.166 (0.100) 0.161 (0.114)
λ3,2 -0.150 (0.068) -0.161 (0.050) -0.105 (0.047) -0.122 (0.047)
λ4,2 0.084 (0.052) 0.027 (0.039) 0.051 (0.037) 0.031 (0.035)
λ5,2 0.150 (0.048) 0.102 (0.041) 0.138 (0.037) 0.101 (0.036)
λ6,2 -0.348 (0.135) -0.180 (0.070) -0.205 (0.077) -0.176 (0.063)
λ7,2 1.140 (0.088) 1.160 (0.077) 1.080 (0.068) 1.040 (0.068)
λ8,2 0.595 (0.075) 0.583 (0.076) 0.531 (0.068) 0.488 (0.067)
λ9,2 0.242 (0.087) 0.195 (0.069) 0.179 (0.066) 0.164 (0.062)
λ10,2 0.359 (0.064) 0.368 (0.055) 0.343 (0.051) 0.315 (0.051)
λ11,2 0.717 (0.121) 0.505 (0.062) 0.486 (0.065) 0.459 (0.057)
ψ1,1 0.193 (0.013) 0.117 (0.010) 0.107 (0.009) 0.085 (0.007)
ψ2,2 0.559 (0.060) 0.418 (0.049) 0.369 (0.042) 0.330 (0.041)
ψ3,3 0.197 (0.018) 0.114 (0.011) 0.106 (0.009) 0.082 (0.007)
ψ4,4 0.037 (0.007) 0.025 (0.005) 0.019 (0.004) 0.016 (0.003)
ψ5,5 0.144 (0.008) 0.100 (0.008) 0.091 (0.007) 0.070 (0.005)
ψ6,6 0.735 (0.031) 0.296 (0.020) 0.305 (0.013) 0.193 (0.011)
ψ7,7 0.222 (0.054) 0.121 (0.040) 0.111 (0.033) 0.068 (0.027)
ψ8,8 0.407 (0.028) 0.330 (0.032) 0.263 (0.021) 0.214 (0.017)
ψ9,9 0.529 (0.019) 0.317 (0.025) 0.283 (0.017) 0.210 (0.014)
ψ10,10 0.376 (0.024) 0.236 (0.019) 0.206 (0.014) 0.160 (0.011)
ψ11,11 0.739 (0.040) 0.264 (0.019) 0.283 (0.014) 0.178 (0.011)
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Most of the parameters comprising the loading matrix have similar point estimates

under all four models. The major differences in point estimates among MCFA-SMN

models are in the parameters of the variance matrix of errors (or, equivalently, specific

latent factors). For this parameters the MCFA-SL model showed the smallest point es-

timates. The standard errors are smaller for most parameters in the models MCFA-t,

MCFA-CN and MCFA-SL, again specially for the variance of errors. In the context of

application of CFA models using robust estimators, Zhong and Yuan (2011) also ob-

served this behavior of point estimates and standard errors’ estimate when comparing

the normal CFA model against robust CFA models.

We compared the fit of the four estimated models using the Akaike Information

Criterion (AIC). The AIC is frequently used for model selection in FA (AKAIKE, 1987;

CASTRO et al., 2014). Table 5 shows the AIC for each of the four models, the smallest

AIC being associated to the MCFA-t(ν = 3). Then, using the AIC as a measure of

model selection, we can consider the MCFA-t(ν = 3) model as presenting the best fit

among the estimated models for the data set analyzed.

Table 5: AIC values for the four fitted exploratory models: MCFA-N, MCFA-t(ν = 3), MCFA-CN(ξ =
0.20,γ = 0.20) and MCFA-SL(ν = 2).

MCFA-N MCFA-t MCFA-CN MCFA-SL
9558.643 8490.332 8736.913 8789.535
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Figure 10: Mahalanobis distances for each of the four estimated exploratory models. Dotted line in-
dicates the 97.5% quantile of the appropriate Mahalanobis distances distribution according to the re-
sponse variable distribution.

An important aspect of the MCFA-SMN models fitted is the behavior of its as-
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sociated Mahalanobis distances. Figure 10 shows the Mahalanobis distances for the

four estimated models, together with its 97.5% theoretical quantile calculated using the

results of Subsection 2.4.1. It can be seen that for the MFCA-SMN model there are

more distances greater than the theoretical quantile, while for the remaining SMN dis-

tributions the Mahalanobis distances stay mainly confined to the limits established by

the probability theory. Although, only the MCFA-t (ν = 3) model shows Mahalanobis

distances systematically smaller than the distances observed for the MCFA-N model.

Taking the MCFA-t (ν = 3) model as the most appropriate to describe the covari-

ance structure of the 11 gene expressions targeted in this analysis, we finally consider

an orthogonal rotation of the loading matrices in order to interpret the results obtained.

Table 6 shows the rotated loading matrix common to both groups, TCGA and ICGCMI-

CRO, with the rotation being made according to the Varimax criterion. The interpreta-

tion of results is differed to Subsection 4.6.

Table 6: Varimax rotation of the estimated loading matrix for the MCFA-t(ν = 3) exploratory model.

Genes 1-th Common Factor 2-th Common Factor
COL3A1 0.947 0.321

COL10A1 0.430 1.200
COL11A1 0.833 0.112
COL5A2 0.920 0.340
THBS2 0.854 0.397
PLAU 0.559 -0.001

PDGFRA 0.142 1.270
PDGFRB 0.538 0.798
ACTA2 0.767 0.466
TIMP3 0.614 0.596
IGF1 0.065 0.555

4.5 Confirmatory model

The exploratory multiple factor analysis model fitted in Subsection 4.4 reveled

an underlining latent structure capable of explaining the covariaces between observed

indicators (or, equivalently, observed variables) in terms of only two common factors.

Those common factors are related to the observed indicators through a matrix of load-

ings, which, after rotation (Table 6), revels a clear pattern of association between in-

dicators: with the proteins COL3A1, COL11A1, COL5A2, THBS2, PLAU, ACTA2 and

TIMP3 showing bigger weights in the first common factor and the proteins COL10A1,

PDGFRA, PDGFRB and IGF1 with bigger weights in the second common factor.

Although, by fixing the covariance matrix of common latent factors equal to the
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identity matrix, the exploratory model assumes orthogonal common latent factors, lead-

ing to less flexible data analysis. Hence, a more flexible model allowing for nonzero co-

variance between common factors would permit to investigate the existence of oblique

common factors. Below we propose a confirmatory multiple factor analysis model

where the loading matrices follow a simple structure (as discussed in Subsection 2.3)

and the covariance matrices of common factors have a free parameter for estimation.

In this confirmatory model, the scale of the indicators is set up by fixing the variance of

each common factor equals to one.

Λg =



λ1,1 0

0 λ2,2

λ3,1 0

λ4,1 0

λ5,1 0

λ6,1 0

0 λ7,2

0 λ8,2

λ9,1 0

λ10,1 0

0 λ11,2



, ζg =

 1 ς2,1

ς2,1 1

 , Ψg = diag(ψ j, j)
11
j=1, g = 1,2. (4.2)

For this application the parameter identification can be verified by searching the

conditions of Theorem 2. According to this theorem the Jacobian matrix R2 defined in

Equation 2.10 must be of full column rank. For the proposed model, the associated

matrix R2 has 12 columns and is of full column rank, since a simple calculation leads

to rank(R2) = 12. Hence, the MCFA-SMN models to be proposed next will have all its

parameters identified.

As in the previous section, the interest resides in the estimation of four MCFA-

SMN models: MCFA-N, MCFA-t, MCFA-CN and MCFA-SN. In order to determine the

fixed values for the parameter ν appearing in the MCFA-t and MCFA-SL models and the

fixed value of the parameters ξ and γ associated to the MCFA-CN model, we obtained

the profile log-likelihood of this parameters. The profiles are shown in Figure 11 for the
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MCFA-t and MCFA-SL models and in Table 7 for the MCFA-CN model.
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Figure 11: Profile log-likelihood of ν in MCFA-t and MCFA-SL confirmatory models.

According to the profiles, the MCFA-t(ν = 3), MCFA-SL(ν = 2) and MCFA-CN(ξ =

20, γ = 0.30) lead to higher log-likelihoods. Comparing with the fitted exploratory mod-

els, here only the parameter γ in the MCFA-CN model resulted differently. The param-

eter estimates of the selected models are shown in Table 8.

Table 7: Log-likelihood for a grid of values of ξ and γ in the MCFA-CN confirmatory model

HH
HHHξ

γ 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 -4299.290 -4290.560 -4289.920 -4294.350 -4302.480 -4313.510 -4326.790
0.15 -4262.380 -4249.940 -4245.560 -4245.660 -4248.250 -4251.520 -4254.840
0.20 -4261.450 -4246.600 -4239.570 -4236.760 -4236.390 -4237.610 -4240.340
0.25 -4279.430 -4263.390 -4255.170 -4251.340 -4250.390 -4251.610 -4254.770
0.30 -4308.020 -4291.640 -4283.090 -4279.080 -4278.190 -4279.710 -4283.360
0.35 -4342.610 -4326.370 -4317.890 -4314.000 -4313.300 -4315.120 -4319.120
0.40 -4380.400 -4364.600 -4356.370 -4352.670 -4352.180 -4354.200 -4358.390

In Table 8 it can be seen that the four MCFA-SMN models reveal a strong cor-

relation between the two common factors (with estimates above 0.90 in all models).

Also the correlation parameter ς2,1 had similar estimates for all models. Otherwise, the

remaining parameters showed greater differences in estimates between models, spe-

cially when comparing the MCFA-N model with the other three models. As occurred

with the exploratory models, the models assuming heavier tails for the distribution of

observed variables showed smaller standard errors mainly for the estimated variances

of errors.
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Table 8: Point estimates and standard errors (in parenthesis) for the parameters in the confirmatory
models: MCFA-N, MCFA-t(ν = 3), MCFA-CN(ξ = 0.20,γ = 0.30) and MCFA-SL(ν = 2).

Parameters MCFA-N MCFA-t MCFA-CN MCFA-SL
ζ2,1 0.928 (0.014) 0.923 (0.014) 0.904 (0.016) 0.907 (0.016)
λ1,1 0.904 (0.038) 0.781 (0.050) 0.736 (0.034) 0.614 (0.031)
λ3,1 0.874 (0.038) 0.645 (0.048) 0.661 (0.035) 0.535 (0.034)
λ4,1 0.976 (0.034) 0.779 (0.051) 0.758 (0.034) 0.628 (0.032)
λ5,1 0.923 (0.035) 0.751 (0.050) 0.725 (0.034) 0.604 (0.032)
λ6,1 0.427 (0.061) 0.418 (0.042) 0.362 (0.044) 0.317 (0.032)
λ9,1 0.679 (0.058) 0.717 (0.056) 0.625 (0.047) 0.550 (0.040)
λ10,1 0.768 (0.040) 0.637 (0.050) 0.586 (0.038) 0.494 (0.035)
λ2,2 0.833 (0.037) 0.682 (0.055) 0.660 (0.041) 0.553 (0.039)
λ7,2 0.576 (0.064) 0.580 (0.056) 0.499 (0.053) 0.427 (0.043)
λ8,2 0.739 (0.054) 0.692 (0.055) 0.624 (0.046) 0.530 (0.042)
λ11,2 0.217 (0.070) 0.248 (0.055) 0.193 (0.058) 0.163 (0.048)
ψ1,1 0.177 (0.011) 0.082 (0.008) 0.101 (0.008) 0.067 (0.005)
ψ2,2 0.302 (0.029) 0.159 (0.019) 0.183 (0.020) 0.123 (0.014)
ψ3,3 0.231 (0.016) 0.103 (0.010) 0.126 (0.010) 0.081 (0.007)
ψ4,4 0.043 (0.006) 0.022 (0.004) 0.024 (0.004) 0.016 (0.003)
ψ5,5 0.143 (0.009) 0.076 (0.007) 0.091 (0.007) 0.061 (0.005)
ψ6,6 0.813 (0.014) 0.244 (0.018) 0.378 (0.010) 0.185 (0.010)
ψ7,7 0.664 (0.040) 0.340 (0.032) 0.406 (0.029) 0.269 (0.020)
ψ8,8 0.449 (0.031) 0.261 (0.029) 0.271 (0.025) 0.193 (0.018)
ψ9,9 0.534 (0.018) 0.244 (0.022) 0.303 (0.016) 0.186 (0.012)
ψ10,10 0.406 (0.026) 0.205 (0.019) 0.241 (0.017) 0.158 (0.011)
ψ11,11 0.948 (0.027) 0.264 (0.020) 0.412 (0.014) 0.207 (0.011)

The AIC for the MCFA-N, MCFA-t(ν = 3), MCFA-SL(ν = 2) and MCFA-CN(ξ = 20,

γ = 0.30) are shown in Table 9. Here, as in the exploratory approach, the fitted model

with lower AIC was the MCFA-t(ν = 3). Comparing the AIC for the fitted exploratory

and confirmatory models it can be seen smaller AIC for the letter. Hence, based on

the AIC criterion, the confirmatory MCFA-t(ν = 3) model would be selected among all

fitted exploratory or confirmatory models.

Table 9: AIC values for the four fitted confirmatory models: MCFA-N, MCFA-t(ν = 3), MCFA-CN(ξ =
0.20,γ = 0.30) and MCFA-SL(ν = 2).

MCFA-N MCFA-t MCFA-CN MCFA-SL
9461.330 8322.731 8518.777 8456.607

The Mahalanobis distances based on the four fitted confirmatory models are

shown in Figure12. Under the MCFA-t(ν = 3) the observations have Mahalanobis dis-

tance below the 97.5% quantile. For the MCFA-CN(ξ = 0.20,γ = 0.30) and MCFA-

SL(ν = 2) few observations have Mahalanobis distance crossing its correspondent

97.5% quantile, specially when compared to the MCFA-N model. Although, differently

from the exploratory approach, the confirmatory MCFA-t(ν = 3) model showed several

Mahalanobis distances a little bit higher then the Mahalanobis distances calculated for
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the MCFA-N model.
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Figure 12: Mahalanobis distances for each of the four estimated confirmatory models. Dotted line
indicates the 97.5% quantile of the appropriate Mahalanobis distances distribution according to the
response variable distribution.

4.6 Interpretation of results

In Subsection 4.4 we defined and estimated MCFA-SMN models using an ex-

ploratory approach to determine a hypothesis relating the pattern of correlations be-

tween the 11 proteins of Table 2. This hypothesis led to confirmatory models (pre-

sented in Subsection 4.5) using loading matrices following a simple structure where

the allocation of indicators in each column of the loading matrix was determined based

on exploratory results. Now we shall argument the validity of our hypothesis by high-

lighting recent discoveries of laboratory researches on the molecular biology of tumor

cells and the medium where this cells develop, the stroma and extra-cellular matrix

(CASEY et al., 2007; LI et al., 2013; FANG et al., 2014; GIALELI et al., 2014; COX

et al., 2015; GASCARD and TLSTY, 2016; JIA et al., 2016; HAMMER et al., 2017).

The modern study of cancer has led scientists to reconsider the role of several

biological factors involved in the dynamic of cancer with emphasis in the medium where

tumor cells develop (GIALELI et al., 2014). The tumor cell micro-environment is mainly

composed of stroma and extra-cellular matrix, both composed by tissue, special types

of cells and molecules located in the tumor cells’ surrounds. Collagen is a central

molecule in this micro-environment and has been shown to play a decisive part in tumor

progression (GASCARD and TLSTY, 2016). Fang et al. (2014) discussed a series of

biological pathways triggered by changes in tumor micro-environment and leading to
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tumor infiltration, angiogenesis, invasion and migration.

The linage of collagen molecules COL3A1, COL10A1, COL11A1, COL5A2 ap-

pears in gene signatures of several cancer types (MATONDO et al., 2017). These

molecules are listed in Table 2 and their gene expression represents the basic vari-

ables of our model. The remaining 7 proteins listed in Table 2 appear in our study

to represent well known physiological relations among molecules present in the extra-

cellular matrix.

Figure 13 gives a diagram explaining the basic relations between the 11 proteins

chosen for composing the observable variables entering in our model. The diagram

was made using the online software STRING, a popular software among medical sci-

entists and clinicians used for gene annotation. The STRING software uses data from

several databases for mining meaningful relationships among biological molecules. Al-

though, the software is not directed to the study of data sets relating exclusively to

cancer.

Figure 13: Diagram showing meaningful relationships for the 11 proteins regulated by targeted genes.
The diagram was generated through the online software STRING directed to molecular biology and
gene annotation. The width of the edges is directly proportional to strength of evidence of association
between molecules

To improve our understanding on the relationship between the 11 targeted pro-

teins in the context of cancer we have selected recent papers on the subject. An

out standing discovery of Hammer et al. (2017) describes the connection between

PDGFRA and collagen. According to laboratory experiments of Hammer et al. (2017),
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hyperactivation of PDGFRA leads to collagen deposition and decreasing in hydraulic

permeability of collagen substrate, then contributing decisively in the dynamic of the

extra-cellular matrix. Yet, this relationship connecting PDGFRA and collagen molecules

is not present in the diagram of Figure 13. PDGFRA and PDGFRB are growth factors

and represent important bio-markers of cancer (GIALELI et al., 2014). The pathologi-

cal functions of PDGFRB includes angiogenesis, metastase and proliferation of tumor

cells (MATONDO et al., 2017).

Another interesting molecule entering in our model is the protein PLAU. This pro-

tein converts plasminogen into plasmin, a substance able to degrade components of

the extra-cellular matrix (LI et al., 2013). Hence, PLAU activation facilitate the invasion

of the extra-cellular matrix and stimulates angiogenesis (LI et al., 2013), i.e. vascular

development. Finally, PLAU mediates the progression of metastasis of cancer cells

and is a prognostic marker in several types of cancer (LI et al., 2013).

The proteins THBS2, TIMP3, ACTA2 and IGF1 are all included in gene signa-

tures of cancer (MATONDO et al., 2017). The protein IGF1 has been associated with

resistance of chemotherapy and it is a target molecule in the study of therapies for non-

responders and partial remission patients (MATONDO et al., 2017). IGF1 has another

important role in the dynamic of the extra-cellular matrix. As PLAU, it can promote the

invasiveness of the extra-cellular matrix (COX et al., 2015). Cox et al. (2015) states that

the functionality of IGF1 depends on features of the extra-cellular matrix and presence

or absence of certain proteins.

The just presented medical findings about the proteins entering in our estimated

confirmatory (and exploratory) models give support for understanding the validity of the

configuration of model matrices used in the proposed models and also for interpreting

the common factors in biological terms.

Figure 13 shows a diagram relating the 11 proteins entering our confirmatory

model. Although the methods used for obtaining this diagram were completely dis-

tinct from the factor analysis model we used in our work, the final results were very

alike. In our model and in the diagram it can be noted two clusters of highly correlated

variables. Those variables group together to form the two common factors, validating

the Kaiser criterion as effective for selecting the number of common latent factors in

our applications. Although there are differences in the clusters of variables determined
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by the MCFA-SMN model and the diagram of the STRING software, those differences

could be explained in terms of the medical findings described above. For example, the

PLAU molecule has been described in laboratory experiments as being highly asso-

ciated with molecules from the collagen linage. Based on this fact, our confirmatory

model, although putting the PLAU molecule in a different cluster when compared with

the STRING diagram, is still in accordance with the current scientific knowledge about

the biological role of this molecule.

Finally, the interpretation of the two common latent factor entering in the confir-

matory model can be explained as follows:

• the first common factor, characterized by the association of the proteins COL3A1,

COL11A1, COL5A2, THBS2, PLAU, ACTA2 and TIMP3, could be interpreted as

fundamentally associated with the production of collagen in the medium where

cancer cells proliferate. This is justified since the higher loadings are those of

COL3A1, COL11A1 and COL5A2, which are all collagen molecules.

• The second common factor determines the correlation between the molecules

COL10A1, PDGFRA, PDGFRB and IGF1. Here, the higher loadings are those of

COL10A1 and PDGFRB. According to the medical findings presented earlier in

this section, the association of this two molecules could be pointing to the regula-

tion of the density of the extracelular matrix and angiogenesis, i.e the proliferation

of blood vessels (which are determinant in the metastasis of cancer).

It is important to notice that our confirmatory model gives a further information

about the latent structure responsible for the association of the set of 11 targeted pro-

tein molecules. That piece of extra information is the correlation between common

factors. In our confirmatory model the estimate of this correlation was above 0.9, rev-

eling a strong association between the two biological functions described above in the

interpretation of the common latent factors. The assumption of oblique common factors

is supported also by the diagram of Figure 13.

As a conclusion, the proposed confirmatory model based on the results of our pri-

mary exploratory study is in line with experimental results obtained in medical research

and also with the results generated from other approaches of data analysis applied to

similar data sets.
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5 Concluding remarks and further directions

5.1 Resumo da seção

Neste capítulo concluímos a dissertação retomando brevemente os principais

pontos abordados na pesquisa e destacando a importância dos novos resultados

obtidos. Também são feitas propostas para pesquisas futuras envolvendo o modelo

MCFA-SMN, incluindo sua extensão para a classe de distribuições elípticas e para a

análise de dados censurados.

5.2 Conclusions

In this dissertation, we have proposed a confirmatory factor analysis model that

generalizes the model proposed by Jöreskog (1971), under SMN distribution for latent

factors. We gave conditions for verifying parameter identification in the MCFA-SMN

model through two simple theorems. Those theorems showed that all identification

conditions for FA models for only one population can adequately be adapted to identify

the MCFA-SMN model. The MCFA-SMN model defined and studied in this dissertation

represents an important step towards the development of factor analysis models for

simultaneous analysis of several populations. Our choice of algorithm for maximum

likelihood estimation, the ECM algorithm, follows a trend in contemporary studies of

FA models (CASTRO et al., 2014; LIN et al., 2014; ZHANG et al., 2014; LIN et al.,

2016) and gives a simple framework for implementation and estimation of the MCFA-

SMN model. Our simulation studies showed that the proposed estimators have good

properties in finite samples. For the calculation of standard errors we have suggested

two methods based on the literature about FA models (JAMSHIDIAN, 1997; LIN et al.,

2014). The simulation results showed that the method of Meilijson (1989) based on the

empirical Fisher information matrix is preferable and leads to confidence intervals with

probability coverage close to the nominal level.

Our application represents an important moment of our research since using

the MCFA-SMN model we could extract meaningful interpretations from the estimated

parameters, confirming the scientific knowledge developed in laboratory research in

medicine and molecular biology. Hence, the MCFA-SMN model extends an important

technique that can contribute to the development of other sciences, like Biology and
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Medicine.

Although, further studies are necessary for confirming the good properties ob-

served in our study for the MCFA-SMN model. Specially, larger simulation studies

are necessary. New simulations studies could be designed to describe the behavior

of estimators when more than two populations are considered in the model or when

other choices of invariance structure for θ is assumed. Simulation studies directed

to the evaluation of robust properties of the estimators are also important. This has

been done in FA models for only one population while assuming latent factor following

multivariate t-Student distribution (ZHANG et al., 2014; CASTRO et al., 2014; LAI and

ZHANG, 2017).

Extensions of the MCFA-SMN model could also be a target for research. One

simple extension is to consider an intercept in the model , with the intercept also de-

pendent on θ . This new model would extend the model proposed by Sörbom (1974)

and would allow to fit models with greater degree of invariance in θ . Also, the tobit-

CFA model proposed by Castro et al. (2014) could be extended to the MCFA-SMN

framework. It would lead to an MCFA-SMN model capable of dealing with censored

observations. To extend the SMN class of distributions to the elliptical class of prob-

ability distributions (FANG and ZHANG, 1990) is also an important topic for research.

Lemonte and Patriota (2011) have proposed a general class of multivariate elliptical

models that, according to the authors, can account for the Structural Equation Models

of Bollen (1989). In this case, the MCFA-SMN model would appear as a particular

case of the model proposed by Lemonte and Patriota (2011). Although, Lemonte and

Patriota (2011) does not discuss any of the association his model could have with fac-

tor analysis, i.e. the authors does not discuss in the FA context any kind of model

specification or parameter identification. Although, Lemonte and Patriota (2011) gives

a Newton-Raphson algorithm that could be used to estimate structural equation mod-

els with elliptically distributed latent factors. Hence, Lemonte and Patriota (2011) is an

important starting point for further extensions of the MCFA-SMN model we discussed

in this dissertation.
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Appendix A - Matrix calculus

The proposed ECM algorithm for estimation of our new model relies on differen-

tiation of matrices. Matrix derivatives have several different definitions in the literature,

related mainly to notation and the way partial derivatives are organized in a new ma-

trix (MAGNUS and NEUDECKER, 1985). Magnus (2010) extended the differentiation

rules of vector calculus to the framework of matrix calculus. We adopt his definition,

which is stated below.

Definition 4. Let F be an m× p matrix function of a matrix of variables X with dimen-

sion n×q. The derivative of F with respect to X is defined as the mp×nq matrix

DF(X) =
∂vec(F(X))

∂vec(X)>
.

Hence, the rules of differentiation of matrices enjoys the same nice properties

of vector calculus, the most important being the chain rule. Magnus and Neudecker

(1985) formally states the chain rule of matrix calculus. We shall state it loosely, follow-

ing Magnus (2010).

Definition 5. Let X be a n×q matrix of variables, F, m× p, differentiable at X and G,

l× r diferentiable at Y = F(X). Then, H(X) = G(F(X)) is differentiable at X, and

DH(X) =
∂vec(G(Y ))

∂vec(Y )>
∂vec(F(X))

∂vec(X)>
.

The notation vec adopted in Definitions (4) and (5) refers to the vec operator,

which stacks the columns of a matrix A, p×q, one beneath the other to get a unique

pq-dimensional column vector vec(A). Analogously, the vech operator putsA= (ai j) in

a vector form, but only taking the elements ai j whose i≥ j. The diag operator extracts

the diagonal of A and present it as a column vector. Next we define the duplication

matrix, D, and the diag matrix, B.

Definition 6. Let A be a square matrix of order p. The duplication matrix D has

dimensions p2× p(p+1)/2, and is implicitly defined as

Dvech(A) = vec(A). (A.1)
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Definition 7. LetA be a diagonal matrix of order p. The diag matrixB has dimensions

p2× p, and is implicitly defined as

Bdiag(A) = vec(A). (A.2)
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Appendix B - Tables of simulations’ results

Here, we give tables with the simulation results discussed in Section 3.

Table 10: Bias.

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.0021 0.0022 0.0049 0.0018 200

2 λ21 0.0015 0.0007 0.0023 0.0013 400

3 λ21 0.0011 0.0025 0.0005 -0.0002 600

4 λ21 0.0005 0.0015 0.0001 -0.0001 800

5 λ21 0.0013 0.0011 0.0015 0.0013 1000

6 λ31 0.0020 0.0077 0.0054 0.0035 200

7 λ31 0.0017 0.0030 0.0049 0.0038 400

8 λ31 0.0013 0.0042 0.0025 0.0006 600

9 λ31 0.0020 0.0018 0.0014 0.0008 800

10 λ31 0.0014 0.0026 0.0015 0.0027 1000

11 λ52 0.0014 -0.0883 0.0020 0.0023 200

12 λ52 0.0011 0.0016 0.0008 0.0004 400

13 λ52 0.0005 0.0004 0.0010 0.0008 600

14 λ52 0.0007 0.0004 -0.0004 0.0004 800

15 λ52 -0.0003 0.0008 0.0010 0.0001 1000

16 λ62 0.0014 -0.0781 0.0012 0.0020 200

17 λ62 0.0009 0.0012 0.0009 0.0011 400

18 λ62 0.0002 0.0010 0.0012 0.0012 600

19 λ62 0.0008 0.0007 0.0004 0.0002 800

20 λ62 -0.0001 0.0011 0.0005 0.0013 1000

21 λ83 -0.0387 -0.0162 0.0146 -0.0503 200

22 λ83 0.0056 0.0056 0.0058 0.0052 400

23 λ83 0.0012 0.0007 0.0052 0.0046 600

24 λ83 0.0041 0.0050 0.0027 0.0052 800

25 λ83 0.0031 0.0016 0.0023 0.0027 1000

26 λ93 -0.0371 -0.0096 0.0115 -0.0496 200

27 λ93 0.0053 0.0064 0.0040 0.0025 400

28 λ93 0.0026 0.0004 0.0034 0.0029 600

29 λ93 0.0033 0.0037 0.0018 0.0046 800

30 λ93 0.0027 0.0014 0.0023 0.0015 1000

31 ψ11 -0.0058 -0.0032 -0.0031 -0.0043 200

32 ψ11 -0.0014 -0.0021 -0.0007 -0.0017 400

33 ψ11 -0.0017 0.0007 -0.0013 -0.0010 600

34 ψ11 -0.0006 0.0000 -0.0007 -0.0011 800

35 ψ11 -0.0008 -0.0005 -0.0004 -0.0007 1000

36 ψ22 -0.0022 -0.0006 -0.0018 -0.0012 200
(continue in the next page)
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Table 10: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

37 ψ22 -0.0018 0.0003 -0.0011 -0.0001 400

38 ψ22 -0.0004 0.0002 -0.0017 -0.0004 600

39 ψ22 -0.0013 -0.0000 -0.0012 0.0002 800

40 ψ22 -0.0003 0.0006 -0.0013 -0.0004 1000

41 ψ33 -0.0016 -0.0029 -0.0029 -0.0010 200

42 ψ33 -0.0005 -0.0018 -0.0013 -0.0009 400

43 ψ33 -0.0002 -0.0008 -0.0011 -0.0006 600

44 ψ33 -0.0006 -0.0004 -0.0007 -0.0008 800

45 ψ33 -0.0012 -0.0013 -0.0005 -0.0013 1000

46 ψ44 -0.0012 0.0004 -0.0002 -0.0001 200

47 ψ44 -0.0004 0.0002 -0.0001 -0.0003 400

48 ψ44 -0.0003 0.0000 -0.0006 0.0000 600

49 ψ44 -0.0003 -0.0002 -0.0006 -0.0007 800

50 ψ44 -0.0005 -0.0001 0.0000 -0.0002 1000

51 ψ55 -0.0008 -0.0005 -0.0016 -0.0007 200

52 ψ55 -0.0004 -0.0003 -0.0005 -0.0005 400

53 ψ55 -0.0007 0.0002 -0.0005 -0.0003 600

54 ψ55 -0.0002 -0.0000 0.0001 0.0003 800

55 ψ55 -0.0003 0.0003 -0.0004 0.0000 1000

56 ψ66 -0.0011 -0.0011 -0.0009 -0.0013 200

57 ψ66 -0.0006 0.0001 -0.0006 -0.0005 400

58 ψ66 -0.0001 0.0003 -0.0005 -0.0002 600

59 ψ66 -0.0002 -0.0001 -0.0004 0.0002 800

60 ψ66 0.0000 -0.0004 -0.0001 -0.0005 1000

61 ψ77 -0.0025 -0.0014 -0.0017 -0.0015 200

62 ψ77 -0.0005 -0.0002 -0.0011 -0.0014 400

63 ψ77 -0.0012 -0.0015 -0.0006 -0.0002 600

64 ψ77 -0.0006 0.0002 -0.0013 -0.0000 800

65 ψ77 -0.0003 -0.0003 -0.0004 -0.0002 1000

66 ψ88 -0.0039 -0.0021 -0.0034 -0.0034 200

67 ψ88 -0.0001 -0.0008 -0.0027 -0.0005 400

68 ψ88 -0.0000 -0.0003 -0.0018 -0.0010 600

69 ψ88 -0.0008 -0.0007 -0.0012 -0.0009 800

70 ψ88 -0.0008 -0.0005 -0.0002 -0.0018 1000

71 ψ99 -0.0031 -0.0007 -0.0024 -0.0047 200

72 ψ99 -0.0018 -0.0022 -0.0010 -0.0012 400

73 ψ99 -0.0016 -0.0007 -0.0010 -0.0009 600

74 ψ99 -0.0012 -0.0005 -0.0002 -0.0005 800

75 ψ99 -0.0006 -0.0005 -0.0007 0.0004 1000
(continue in the next page)
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Table 10: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

76 ζ11 0.0053 0.0048 0.0019 0.0070 200

77 ζ11 0.0015 0.0033 0.0002 0.0011 400

78 ζ11 0.0020 0.0003 0.0012 0.0025 600

79 ζ11 0.0001 0.0010 0.0011 0.0021 800

80 ζ11 0.0006 0.0013 -0.0001 0.0003 1000

81 ζ21 -0.0012 0.0001 0.0000 0.0018 200

82 ζ21 -0.0003 0.0002 -0.0006 -0.0000 400

83 ζ21 0.0006 -0.0000 -0.0001 0.0005 600

84 ζ21 0.0001 -0.0004 -0.0000 0.0001 800

85 ζ21 0.0005 0.0002 -0.0002 -0.0002 1000

86 ζ22 0.0005 0.0025 0.0009 0.0020 200

87 ζ22 0.0006 0.0001 0.0004 0.0004 400

88 ζ22 0.0009 0.0013 0.0003 0.0004 600

89 ζ22 0.0003 0.0006 0.0006 0.0006 800

90 ζ22 0.0016 0.0003 0.0002 0.0002 1000

91 ζ31 -0.0003 0.0009 -0.0003 0.0008 200

92 ζ31 0.0001 0.0004 -0.0005 0.0003 400

93 ζ31 0.0007 0.0004 0.0000 0.0004 600

94 ζ31 -0.0001 0.0004 0.0003 0.0001 800

95 ζ31 0.0001 0.0003 -0.0000 -0.0002 1000

96 ζ32 0.0000 0.0006 -0.0004 0.0007 200

97 ζ32 -0.0002 0.0001 0.0002 0.0002 400

98 ζ32 0.0004 0.0005 -0.0001 0.0001 600

99 ζ32 -0.0000 0.0001 0.0001 -0.0001 800

100 ζ32 -0.0001 0.0003 0.0000 -0.0001 1000

101 ζ33 0.0029 0.0056 0.0022 0.0044 200

102 ζ33 0.0012 0.0032 0.0019 0.0019 400

103 ζ33 0.0015 0.0030 0.0010 0.0012 600

104 ζ33 -0.0000 0.0009 0.0008 -0.0001 800

105 ζ33 0.0005 0.0015 0.0006 0.0008 1000

Table 11: Mean Square Error (MSE).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.0081 0.0095 0.0088 0.0087 200

2 λ21 0.0040 0.0046 0.0042 0.0043 400

3 λ21 0.0026 0.0032 0.0028 0.0028 600

4 λ21 0.0020 0.0023 0.0021 0.0022 800

5 λ21 0.0016 0.0019 0.0017 0.0017 1000

6 λ31 0.0112 0.0130 0.0115 0.0116 200
(continue in the next page)
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Table 11: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

7 λ31 0.0053 0.0064 0.0058 0.0057 400

8 λ31 0.0035 0.0042 0.0039 0.0037 600

9 λ31 0.0027 0.0032 0.0028 0.0028 800

10 λ31 0.0022 0.0024 0.0023 0.0023 1000

11 λ52 0.0030 14.0492 0.0032 0.0031 200

12 λ52 0.0015 0.0017 0.0015 0.0015 400

13 λ52 0.0009 0.0011 0.0010 0.0010 600

14 λ52 0.0007 0.0008 0.0008 0.0008 800

15 λ52 0.0006 0.0007 0.0006 0.0006 1000

16 λ62 0.0029 11.3490 0.0031 0.0031 200

17 λ62 0.0014 0.0017 0.0015 0.0015 400

18 λ62 0.0010 0.0011 0.0011 0.0010 600

19 λ62 0.0007 0.0008 0.0008 0.0008 800

20 λ62 0.0006 0.0007 0.0006 0.0006 1000

21 λ83 3.1571 3.5002 0.0248 3.7722 200

22 λ83 0.0112 0.0130 0.0116 0.0115 400

23 λ83 0.0072 0.0084 0.0077 0.0075 600

24 λ83 0.0055 0.0062 0.0058 0.0057 800

25 λ83 0.0043 0.0050 0.0046 0.0045 1000

26 λ93 2.9575 2.3612 0.0201 3.6304 200

27 λ93 0.0091 0.0107 0.0095 0.0095 400

28 λ93 0.0057 0.0066 0.0063 0.0063 600

29 λ93 0.0044 0.0051 0.0047 0.0047 800

30 λ93 0.0035 0.0041 0.0038 0.0037 1000

31 ψ11 0.0051 0.0057 0.0047 0.0049 200

32 ψ11 0.0022 0.0027 0.0024 0.0023 400

33 ψ11 0.0015 0.0018 0.0015 0.0016 600

34 ψ11 0.0011 0.0014 0.0011 0.0012 800

35 ψ11 0.0009 0.0011 0.0010 0.0009 1000

36 ψ22 0.0040 0.0054 0.0044 0.0042 200

37 ψ22 0.0019 0.0027 0.0022 0.0021 400

38 ψ22 0.0014 0.0017 0.0015 0.0015 600

39 ψ22 0.0010 0.0014 0.0011 0.0011 800

40 ψ22 0.0008 0.0011 0.0009 0.0009 1000

41 ψ33 0.0038 0.0050 0.0041 0.0040 200

42 ψ33 0.0019 0.0024 0.0020 0.0020 400

43 ψ33 0.0012 0.0016 0.0013 0.0013 600

44 ψ33 0.0009 0.0012 0.0010 0.0010 800

45 ψ33 0.0007 0.0009 0.0008 0.0008 1000
(continue in the next page)
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Table 11: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

46 ψ44 0.0010 0.0015 0.0011 0.0011 200

47 ψ44 0.0005 0.0006 0.0005 0.0005 400

48 ψ44 0.0003 0.0004 0.0004 0.0003 600

49 ψ44 0.0003 0.0003 0.0003 0.0003 800

50 ψ44 0.0002 0.0003 0.0002 0.0002 1000

51 ψ55 0.0010 0.0013 0.0011 0.0011 200

52 ψ55 0.0005 0.0007 0.0006 0.0005 400

53 ψ55 0.0003 0.0004 0.0004 0.0004 600

54 ψ55 0.0002 0.0003 0.0003 0.0003 800

55 ψ55 0.0002 0.0003 0.0002 0.0002 1000

56 ψ66 0.0011 0.0014 0.0011 0.0011 200

57 ψ66 0.0005 0.0007 0.0006 0.0006 400

58 ψ66 0.0003 0.0004 0.0004 0.0004 600

59 ψ66 0.0003 0.0003 0.0003 0.0003 800

60 ψ66 0.0002 0.0003 0.0002 0.0002 1000

61 ψ77 0.0036 0.0048 0.0040 0.0039 200

62 ψ77 0.0018 0.0024 0.0019 0.0019 400

63 ψ77 0.0012 0.0015 0.0013 0.0013 600

64 ψ77 0.0009 0.0012 0.0010 0.0009 800

65 ψ77 0.0007 0.0009 0.0008 0.0008 1000

66 ψ88 0.0040 0.0048 0.0043 0.0043 200

67 ψ88 0.0020 0.0024 0.0021 0.0021 400

68 ψ88 0.0013 0.0016 0.0014 0.0014 600

69 ψ88 0.0010 0.0011 0.0010 0.0010 800

70 ψ88 0.0008 0.0010 0.0008 0.0008 1000

71 ψ99 0.0036 0.0046 0.0039 0.0038 200

72 ψ99 0.0018 0.0022 0.0019 0.0019 400

73 ψ99 0.0012 0.0014 0.0013 0.0012 600

74 ψ99 0.0009 0.0012 0.0010 0.0010 800

75 ψ99 0.0007 0.0009 0.0007 0.0008 1000

76 ζ11 0.0078 0.0095 0.0080 0.0082 200

77 ζ11 0.0036 0.0047 0.0040 0.0039 400

78 ζ11 0.0025 0.0030 0.0026 0.0026 600

79 ζ11 0.0018 0.0023 0.0019 0.0020 800

80 ζ11 0.0015 0.0018 0.0016 0.0016 1000

81 ζ21 0.0021 0.0027 0.0023 0.0023 200

82 ζ21 0.0011 0.0013 0.0012 0.0011 400

83 ζ21 0.0007 0.0009 0.0008 0.0008 600

84 ζ21 0.0005 0.0007 0.0006 0.0006 800
(continue in the next page)
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Table 11: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

85 ζ21 0.0004 0.0005 0.0005 0.0005 1000

86 ζ22 0.0049 0.0068 0.0056 0.0055 200

87 ζ22 0.0025 0.0033 0.0029 0.0027 400

88 ζ22 0.0017 0.0022 0.0019 0.0018 600

89 ζ22 0.0013 0.0017 0.0015 0.0014 800

90 ζ22 0.0010 0.0014 0.0011 0.0011 1000

91 ζ31 0.0015 0.0018 0.0015 0.0016 200

92 ζ31 0.0007 0.0009 0.0008 0.0007 400

93 ζ31 0.0005 0.0006 0.0005 0.0005 600

94 ζ31 0.0004 0.0004 0.0004 0.0004 800

95 ζ31 0.0003 0.0003 0.0003 0.0003 1000

96 ζ32 0.0013 0.0015 0.0014 0.0014 200

97 ζ32 0.0006 0.0008 0.0007 0.0007 400

98 ζ32 0.0004 0.0005 0.0005 0.0004 600

99 ζ32 0.0003 0.0004 0.0003 0.0003 800

100 ζ32 0.0003 0.0003 0.0003 0.0003 1000

101 ζ33 0.0043 0.0052 0.0045 0.0046 200

102 ζ33 0.0022 0.0026 0.0022 0.0022 400

103 ζ33 0.0014 0.0017 0.0015 0.0015 600

104 ζ33 0.0010 0.0013 0.0011 0.0011 800

105 ζ33 0.0009 0.0010 0.0009 0.0009 1000

Table 12: Monte Carlo standard errors (MCSE).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.0899 0.0977 0.0938 0.0930 200

2 λ21 0.0633 0.0681 0.0651 0.0653 400

3 λ21 0.0514 0.0567 0.0526 0.0524 600

4 λ21 0.0449 0.0476 0.0453 0.0464 800

5 λ21 0.0396 0.0433 0.0416 0.0409 1000

6 λ31 0.1059 0.1137 0.1072 0.1078 200

7 λ31 0.0730 0.0799 0.0763 0.0755 400

8 λ31 0.0594 0.0646 0.0623 0.0612 600

9 λ31 0.0518 0.0563 0.0532 0.0528 800

10 λ31 0.0464 0.0491 0.0484 0.0477 1000

11 λ52 0.0544 3.7472 0.0565 0.0559 200

12 λ52 0.0386 0.0412 0.0391 0.0393 400

13 λ52 0.0304 0.0338 0.0319 0.0313 600

14 λ52 0.0266 0.0291 0.0280 0.0277 800
(continue in the next page)
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Table 12: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

15 λ52 0.0238 0.0261 0.0248 0.0249 1000

16 λ62 0.0540 3.3679 0.0560 0.0554 200

17 λ62 0.0377 0.0414 0.0393 0.0387 400

18 λ62 0.0311 0.0338 0.0326 0.0317 600

19 λ62 0.0268 0.0289 0.0280 0.0276 800

20 λ62 0.0238 0.0260 0.0244 0.0252 1000

21 λ83 1.7764 1.8708 0.1567 1.9416 200

22 λ83 0.1057 0.1140 0.1075 0.1072 400

23 λ83 0.0846 0.0915 0.0878 0.0867 600

24 λ83 0.0742 0.0789 0.0760 0.0755 800

25 λ83 0.0659 0.0705 0.0677 0.0671 1000

26 λ93 1.7193 1.5366 0.1414 1.9047 200

27 λ93 0.0951 0.1034 0.0976 0.0977 400

28 λ93 0.0755 0.0815 0.0792 0.0793 600

29 λ93 0.0666 0.0715 0.0688 0.0684 800

30 λ93 0.0593 0.0639 0.0618 0.0610 1000

31 ψ11 0.0711 0.0753 0.0685 0.0700 200

32 ψ11 0.0468 0.0522 0.0487 0.0482 400

33 ψ11 0.0388 0.0426 0.0388 0.0394 600

34 ψ11 0.0333 0.0368 0.0339 0.0345 800

35 ψ11 0.0295 0.0325 0.0309 0.0307 1000

36 ψ22 0.0634 0.0735 0.0661 0.0647 200

37 ψ22 0.0441 0.0524 0.0466 0.0460 400

38 ψ22 0.0370 0.0418 0.0383 0.0382 600

39 ψ22 0.0315 0.0375 0.0335 0.0326 800

40 ψ22 0.0280 0.0329 0.0298 0.0295 1000

41 ψ33 0.0617 0.0705 0.0641 0.0635 200

42 ψ33 0.0434 0.0493 0.0449 0.0448 400

43 ψ33 0.0350 0.0396 0.0367 0.0364 600

44 ψ33 0.0306 0.0343 0.0319 0.0314 800

45 ψ33 0.0270 0.0306 0.0290 0.0276 1000

46 ψ44 0.0322 0.0392 0.0333 0.0328 200

47 ψ44 0.0229 0.0255 0.0234 0.0232 400

48 ψ44 0.0182 0.0209 0.0195 0.0185 600

49 ψ44 0.0159 0.0180 0.0167 0.0167 800

50 ψ44 0.0142 0.0160 0.0149 0.0149 1000

51 ψ55 0.0321 0.0364 0.0332 0.0328 200

52 ψ55 0.0226 0.0255 0.0235 0.0229 400

53 ψ55 0.0182 0.0206 0.0193 0.0188 600
(continue in the next page)
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Table 12: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

54 ψ55 0.0156 0.0178 0.0167 0.0165 800

55 ψ55 0.0142 0.0160 0.0148 0.0147 1000

56 ψ66 0.0328 0.0368 0.0338 0.0335 200

57 ψ66 0.0228 0.0259 0.0240 0.0237 400

58 ψ66 0.0186 0.0210 0.0193 0.0194 600

59 ψ66 0.0165 0.0183 0.0170 0.0168 800

60 ψ66 0.0144 0.0161 0.0148 0.0150 1000

61 ψ77 0.0596 0.0694 0.0629 0.0621 200

62 ψ77 0.0424 0.0486 0.0433 0.0435 400

63 ψ77 0.0342 0.0386 0.0358 0.0359 600

64 ψ77 0.0295 0.0342 0.0311 0.0305 800

65 ψ77 0.0263 0.0300 0.0277 0.0276 1000

66 ψ88 0.0627 0.0694 0.0652 0.0653 200

67 ψ88 0.0447 0.0492 0.0459 0.0459 400

68 ψ88 0.0357 0.0406 0.0373 0.0372 600

69 ψ88 0.0309 0.0339 0.0322 0.0319 800

70 ψ88 0.0279 0.0309 0.0288 0.0285 1000

71 ψ99 0.0599 0.0676 0.0624 0.0613 200

72 ψ99 0.0423 0.0469 0.0436 0.0430 400

73 ψ99 0.0346 0.0377 0.0359 0.0349 600

74 ψ99 0.0298 0.0340 0.0315 0.0308 800

75 ψ99 0.0264 0.0302 0.0272 0.0276 1000

76 ζ11 0.0881 0.0974 0.0894 0.0900 200

77 ζ11 0.0604 0.0683 0.0632 0.0622 400

78 ζ11 0.0502 0.0545 0.0513 0.0513 600

79 ζ11 0.0427 0.0475 0.0437 0.0450 800

80 ζ11 0.0389 0.0421 0.0404 0.0397 1000

81 ζ21 0.0461 0.0522 0.0483 0.0476 200

82 ζ21 0.0330 0.0363 0.0346 0.0334 400

83 ζ21 0.0269 0.0300 0.0278 0.0276 600

84 ζ21 0.0230 0.0256 0.0239 0.0241 800

85 ζ21 0.0212 0.0228 0.0218 0.0213 1000

86 ζ22 0.0703 0.0826 0.0750 0.0741 200

87 ζ22 0.0499 0.0576 0.0535 0.0522 400

88 ζ22 0.0412 0.0468 0.0434 0.0427 600

89 ζ22 0.0360 0.0409 0.0382 0.0373 800

90 ζ22 0.0318 0.0370 0.0336 0.0334 1000

91 ζ31 0.0381 0.0420 0.0388 0.0399 200

92 ζ31 0.0269 0.0294 0.0279 0.0273 400
(continue in the next page)
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

93 ζ31 0.0220 0.0240 0.0228 0.0226 600

94 ζ31 0.0188 0.0205 0.0193 0.0196 800

95 ζ31 0.0173 0.0184 0.0174 0.0176 1000

96 ζ32 0.0362 0.0392 0.0369 0.0371 200

97 ζ32 0.0252 0.0276 0.0266 0.0256 400

98 ζ32 0.0207 0.0226 0.0213 0.0210 600

99 ζ32 0.0175 0.0191 0.0184 0.0184 800

100 ζ32 0.0161 0.0174 0.0165 0.0164 1000

101 ζ33 0.0654 0.0721 0.0669 0.0677 200

102 ζ33 0.0464 0.0508 0.0472 0.0474 400

103 ζ33 0.0374 0.0414 0.0387 0.0381 600

104 ζ33 0.0320 0.0355 0.0335 0.0331 800

105 ζ33 0.0292 0.0318 0.0301 0.0297 1000

Table 13: Average standard errors calculated using the Empirical Fisher Information (EFI).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.0934 0.0987 0.0973 0.0946 200

2 λ21 0.0644 0.0684 0.0664 0.0657 400

3 λ21 0.0520 0.0557 0.0536 0.0531 600

4 λ21 0.0449 0.0480 0.0463 0.0458 800

5 λ21 0.0400 0.0428 0.0414 0.0409 1000

6 λ31 0.1084 0.1147 0.1125 0.1096 200

7 λ31 0.0745 0.0793 0.0771 0.0761 400

8 λ31 0.0602 0.0645 0.0622 0.0615 600

9 λ31 0.0520 0.0556 0.0536 0.0530 800

10 λ31 0.0463 0.0496 0.0479 0.0474 1000

11 λ52 0.0563 0.0595 0.0585 0.0572 200

12 λ52 0.0389 0.0414 0.0401 0.0396 400

13 λ52 0.0314 0.0336 0.0324 0.0321 600

14 λ52 0.0271 0.0290 0.0280 0.0277 800

15 λ52 0.0242 0.0259 0.0250 0.0247 1000

16 λ62 0.0562 0.0593 0.0583 0.0571 200

17 λ62 0.0387 0.0413 0.0400 0.0395 400

18 λ62 0.0314 0.0335 0.0324 0.0320 600

19 λ62 0.0271 0.0289 0.0279 0.0277 800

20 λ62 0.0241 0.0258 0.0249 0.0247 1000

21 λ83 0.4217 0.1648 0.1630 0.5464 200

22 λ83 0.1070 0.1136 0.1102 0.1089 400

23 λ83 0.0861 0.0919 0.0891 0.0882 600
(continue in the next page)
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

24 λ83 0.0745 0.0796 0.0767 0.0761 800

25 λ83 0.0663 0.0709 0.0685 0.0678 1000

26 λ93 0.3708 0.1490 0.1468 0.5254 200

27 λ93 0.0966 0.1027 0.0994 0.0982 400

28 λ93 0.0778 0.0829 0.0803 0.0795 600

29 λ93 0.0672 0.0718 0.0692 0.0688 800

30 λ93 0.0599 0.0640 0.0618 0.0611 1000

31 ψ11 0.0694 0.0752 0.0712 0.0705 200

32 ψ11 0.0478 0.0523 0.0494 0.0488 400

33 ψ11 0.0386 0.0425 0.0401 0.0397 600

34 ψ11 0.0333 0.0367 0.0346 0.0342 800

35 ψ11 0.0297 0.0327 0.0309 0.0305 1000

36 ψ22 0.0651 0.0754 0.0685 0.0669 200

37 ψ22 0.0451 0.0527 0.0475 0.0467 400

38 ψ22 0.0366 0.0429 0.0385 0.0379 600

39 ψ22 0.0316 0.0371 0.0333 0.0327 800

40 ψ22 0.0282 0.0332 0.0297 0.0292 1000

41 ψ33 0.0632 0.0708 0.0658 0.0646 200

42 ψ33 0.0437 0.0494 0.0457 0.0450 400

43 ψ33 0.0355 0.0402 0.0370 0.0365 600

44 ψ33 0.0306 0.0347 0.0320 0.0315 800

45 ψ33 0.0273 0.0310 0.0286 0.0282 1000

46 ψ44 0.0331 0.0369 0.0347 0.0339 200

47 ψ44 0.0230 0.0258 0.0239 0.0236 400

48 ψ44 0.0186 0.0210 0.0194 0.0192 600

49 ψ44 0.0161 0.0181 0.0168 0.0165 800

50 ψ44 0.0144 0.0162 0.0150 0.0148 1000

51 ψ55 0.0330 0.0366 0.0344 0.0336 200

52 ψ55 0.0229 0.0256 0.0238 0.0234 400

53 ψ55 0.0185 0.0208 0.0193 0.0190 600

54 ψ55 0.0160 0.0179 0.0167 0.0165 800

55 ψ55 0.0143 0.0161 0.0149 0.0147 1000

56 ψ66 0.0335 0.0374 0.0351 0.0343 200

57 ψ66 0.0233 0.0262 0.0243 0.0239 400

58 ψ66 0.0189 0.0214 0.0197 0.0194 600

59 ψ66 0.0163 0.0184 0.0170 0.0168 800

60 ψ66 0.0146 0.0165 0.0152 0.0150 1000

61 ψ77 0.0613 0.0697 0.0642 0.0629 200

62 ψ77 0.0425 0.0487 0.0445 0.0438 400
(continue in the next page)
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

63 ψ77 0.0345 0.0396 0.0361 0.0356 600

64 ψ77 0.0298 0.0342 0.0312 0.0307 800

65 ψ77 0.0266 0.0305 0.0279 0.0274 1000

66 ψ88 0.0648 0.0710 0.0674 0.0661 200

67 ψ88 0.0449 0.0495 0.0466 0.0461 400

68 ψ88 0.0363 0.0402 0.0378 0.0373 600

69 ψ88 0.0314 0.0348 0.0326 0.0322 800

70 ψ88 0.0280 0.0310 0.0291 0.0288 1000

71 ψ99 0.0619 0.0693 0.0645 0.0632 200

72 ψ99 0.0428 0.0483 0.0447 0.0439 400

73 ψ99 0.0347 0.0392 0.0362 0.0357 600

74 ψ99 0.0300 0.0339 0.0313 0.0309 800

75 ψ99 0.0268 0.0303 0.0280 0.0276 1000

76 ζ11 0.0899 0.0969 0.0935 0.0914 200

77 ζ11 0.0619 0.0674 0.0638 0.0631 400

78 ζ11 0.0501 0.0547 0.0518 0.0514 600

79 ζ11 0.0432 0.0473 0.0448 0.0443 800

80 ζ11 0.0385 0.0423 0.0399 0.0395 1000

81 ζ21 0.0486 0.0525 0.0512 0.0495 200

82 ζ21 0.0336 0.0366 0.0347 0.0343 400

83 ζ21 0.0272 0.0298 0.0282 0.0278 600

84 ζ21 0.0234 0.0257 0.0243 0.0240 800

85 ζ21 0.0209 0.0230 0.0217 0.0214 1000

86 ζ22 0.0749 0.0837 0.0796 0.0767 200

87 ζ22 0.0517 0.0582 0.0540 0.0531 400

88 ζ22 0.0420 0.0474 0.0437 0.0431 600

89 ζ22 0.0362 0.0409 0.0378 0.0372 800

90 ζ22 0.0323 0.0365 0.0337 0.0332 1000

91 ζ31 0.0396 0.0424 0.0414 0.0402 200

92 ζ31 0.0273 0.0295 0.0282 0.0279 400

93 ζ31 0.0222 0.0240 0.0229 0.0227 600

94 ζ31 0.0190 0.0207 0.0198 0.0195 800

95 ζ31 0.0170 0.0185 0.0176 0.0174 1000

96 ζ32 0.0372 0.0400 0.0392 0.0379 200

97 ζ32 0.0257 0.0278 0.0266 0.0263 400

98 ζ32 0.0209 0.0226 0.0215 0.0213 600

99 ζ32 0.0180 0.0195 0.0186 0.0184 800

100 ζ32 0.0160 0.0174 0.0166 0.0164 1000

101 ζ33 0.0677 0.0730 0.0707 0.0689 200
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

102 ζ33 0.0468 0.0508 0.0485 0.0478 400

103 ζ33 0.0379 0.0413 0.0393 0.0388 600

104 ζ33 0.0327 0.0356 0.0339 0.0335 800

105 ζ33 0.0292 0.0319 0.0303 0.0299 1000

Table 14: Average standard errors calculated using the Central Difference Method (CDM).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.0870 0.0935 0.0999 0.0887 200

2 λ21 0.0611 0.0656 0.0633 0.0626 400

3 λ21 0.0498 0.0536 0.0515 0.0510 600

4 λ21 0.0431 0.0464 0.0445 0.0441 800

5 λ21 0.0386 0.0414 0.0399 0.0395 1000

6 λ31 0.0983 0.1056 0.1174 0.1002 200

7 λ31 0.0690 0.0741 0.0715 0.0707 400

8 λ31 0.0562 0.0605 0.0581 0.0575 600

9 λ31 0.0487 0.0523 0.0502 0.0497 800

10 λ31 0.0435 0.0467 0.0449 0.0445 1000

11 λ52 0.0533 0.0770 0.0571 0.0546 200

12 λ52 0.0376 0.0405 0.0389 0.0385 400

13 λ52 0.0307 0.0330 0.0317 0.0314 600

14 λ52 0.0266 0.0285 0.0274 0.0272 800

15 λ52 0.0237 0.0255 0.0246 0.0243 1000

16 λ62 0.0532 0.0755 0.0568 0.0544 200

17 λ62 0.0375 0.0404 0.0388 0.0385 400

18 λ62 0.0306 0.0329 0.0316 0.0314 600

19 λ62 0.0265 0.0285 0.0274 0.0271 800

20 λ62 0.0237 0.0255 0.0245 0.0243 1000

21 λ83 0.1508 0.1626 0.1828 0.1543 200

22 λ83 0.1055 0.1133 0.1090 0.1081 400

23 λ83 0.0855 0.0919 0.0887 0.0878 600

24 λ83 0.0742 0.0797 0.0766 0.0761 800

25 λ83 0.0662 0.0711 0.0684 0.0678 1000

26 λ93 0.1358 0.1466 0.1615 0.1388 200

27 λ93 0.0951 0.1021 0.0981 0.0971 400

28 λ93 0.0771 0.0827 0.0798 0.0790 600

29 λ93 0.0668 0.0718 0.0690 0.0685 800

30 λ93 0.0596 0.0640 0.0617 0.0610 1000

31 ψ11 0.0657 0.0729 0.0759 0.0673 200

32 ψ11 0.0459 0.0511 0.0477 0.0471 400
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

33 ψ11 0.0373 0.0416 0.0389 0.0385 600

34 ψ11 0.0323 0.0360 0.0337 0.0333 800

35 ψ11 0.0288 0.0322 0.0301 0.0297 1000

36 ψ22 0.0626 0.0733 0.0676 0.0649 200

37 ψ22 0.0442 0.0518 0.0466 0.0459 400

38 ψ22 0.0362 0.0423 0.0380 0.0375 600

39 ψ22 0.0313 0.0366 0.0329 0.0325 800

40 ψ22 0.0280 0.0328 0.0295 0.0290 1000

41 ψ33 0.0602 0.0679 0.0669 0.0621 200

42 ψ33 0.0425 0.0479 0.0444 0.0438 400

43 ψ33 0.0346 0.0391 0.0362 0.0357 600

44 ψ33 0.0300 0.0338 0.0313 0.0309 800

45 ψ33 0.0268 0.0302 0.0280 0.0276 1000

46 ψ44 0.0318 0.0360 0.0342 0.0328 200

47 ψ44 0.0225 0.0255 0.0235 0.0232 400

48 ψ44 0.0184 0.0208 0.0192 0.0190 600

49 ψ44 0.0159 0.0180 0.0166 0.0164 800

50 ψ44 0.0142 0.0161 0.0149 0.0147 1000

51 ψ55 0.0317 0.0357 0.0338 0.0327 200

52 ψ55 0.0224 0.0252 0.0234 0.0231 400

53 ψ55 0.0183 0.0206 0.0191 0.0188 600

54 ψ55 0.0158 0.0178 0.0165 0.0163 800

55 ψ55 0.0142 0.0159 0.0148 0.0146 1000

56 ψ66 0.0323 0.0365 0.0345 0.0333 200

57 ψ66 0.0228 0.0258 0.0239 0.0236 400

58 ψ66 0.0186 0.0211 0.0195 0.0192 600

59 ψ66 0.0162 0.0183 0.0169 0.0167 800

60 ψ66 0.0144 0.0163 0.0151 0.0149 1000

61 ψ77 0.0591 0.0684 0.0653 0.0612 200

62 ψ77 0.0418 0.0483 0.0439 0.0432 400

63 ψ77 0.0341 0.0394 0.0358 0.0353 600

64 ψ77 0.0295 0.0341 0.0310 0.0305 800

65 ψ77 0.0264 0.0305 0.0277 0.0273 1000

66 ψ88 0.0625 0.0695 0.0686 0.0644 200

67 ψ88 0.0441 0.0490 0.0459 0.0454 400

68 ψ88 0.0359 0.0399 0.0374 0.0370 600

69 ψ88 0.0311 0.0345 0.0324 0.0320 800

70 ψ88 0.0278 0.0308 0.0290 0.0286 1000

71 ψ99 0.0597 0.0678 0.0645 0.0615 200
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

72 ψ99 0.0421 0.0476 0.0440 0.0434 400

73 ψ99 0.0343 0.0388 0.0359 0.0354 600

74 ψ99 0.0297 0.0336 0.0311 0.0307 800

75 ψ99 0.0266 0.0301 0.0278 0.0274 1000

76 ζ11 0.0745 0.0795 0.0894 0.0758 200

77 ζ11 0.0522 0.0560 0.0536 0.0532 400

78 ζ11 0.0425 0.0456 0.0438 0.0435 600

79 ζ11 0.0368 0.0395 0.0380 0.0377 800

80 ζ11 0.0329 0.0353 0.0339 0.0336 1000

81 ζ21 0.0394 0.0407 0.0411 0.0399 200

82 ζ21 0.0280 0.0289 0.0283 0.0282 400

83 ζ21 0.0229 0.0236 0.0231 0.0231 600

84 ζ21 0.0198 0.0205 0.0201 0.0200 800

85 ζ21 0.0177 0.0183 0.0179 0.0179 1000

86 ζ22 0.0642 0.0715 0.0698 0.0660 200

87 ζ22 0.0455 0.0505 0.0473 0.0467 400

88 ζ22 0.0371 0.0413 0.0386 0.0381 600

89 ζ22 0.0321 0.0358 0.0334 0.0330 800

90 ζ22 0.0288 0.0320 0.0299 0.0296 1000

91 ζ31 0.0352 0.0365 0.0383 0.0357 200

92 ζ31 0.0249 0.0258 0.0252 0.0252 400

93 ζ31 0.0204 0.0210 0.0206 0.0206 600

94 ζ31 0.0176 0.0182 0.0179 0.0178 800

95 ζ31 0.0158 0.0163 0.0160 0.0159 1000

96 ζ32 0.0331 0.0344 0.0356 0.0336 200

97 ζ32 0.0234 0.0243 0.0238 0.0237 400

98 ζ32 0.0192 0.0199 0.0194 0.0194 600

99 ζ32 0.0166 0.0172 0.0168 0.0168 800

100 ζ32 0.0148 0.0154 0.0151 0.0150 1000

101 ζ33 0.0623 0.0676 0.0768 0.0640 200

102 ζ33 0.0440 0.0477 0.0455 0.0451 400

103 ζ33 0.0360 0.0389 0.0371 0.0368 600

104 ζ33 0.0311 0.0336 0.0322 0.0318 800

105 ζ33 0.0278 0.0301 0.0288 0.0285 1000

Table 15: Probability coverage of confidence intervals based on the Empirical Fisher Information (EFI).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.9600 0.9546 0.9560 0.9562 200

2 λ21 0.9564 0.9506 0.9532 0.9490 400
(continue in the next page)
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

3 λ21 0.9546 0.9412 0.9574 0.9514 600

4 λ21 0.9496 0.9544 0.9546 0.9472 800

5 λ21 0.9520 0.9478 0.9508 0.9512 1000

6 λ31 0.9604 0.9498 0.9580 0.9572 200

7 λ31 0.9542 0.9518 0.9524 0.9502 400

8 λ31 0.9504 0.9480 0.9506 0.9514 600

9 λ31 0.9548 0.9484 0.9544 0.9496 800

10 λ31 0.9454 0.9514 0.9494 0.9538 1000

11 λ52 0.9586 0.9560 0.9562 0.9538 200

12 λ52 0.9524 0.9544 0.9578 0.9520 400

13 λ52 0.9568 0.9500 0.9520 0.9540 600

14 λ52 0.9544 0.9476 0.9506 0.9508 800

15 λ52 0.9514 0.9474 0.9530 0.9472 1000

16 λ62 0.9566 0.9576 0.9552 0.9572 200

17 λ62 0.9572 0.9508 0.9548 0.9546 400

18 λ62 0.9558 0.9504 0.9464 0.9500 600

19 λ62 0.9532 0.9486 0.9474 0.9502 800

20 λ62 0.9510 0.9484 0.9536 0.9450 1000

21 λ83 0.9566 0.9504 0.9564 0.9534 200

22 λ83 0.9552 0.9510 0.9562 0.9568 400

23 λ83 0.9522 0.9466 0.9536 0.9536 600

24 λ83 0.9542 0.9542 0.9510 0.9550 800

25 λ83 0.9524 0.9512 0.9550 0.9482 1000

26 λ93 0.9566 0.9556 0.9566 0.9564 200

27 λ93 0.9542 0.9538 0.9528 0.9514 400

28 λ93 0.9522 0.9554 0.9548 0.9488 600

29 λ93 0.9536 0.9510 0.9520 0.9514 800

30 λ93 0.9520 0.9544 0.9504 0.9532 1000

31 ψ11 0.9532 0.9530 0.9552 0.9616 200

32 ψ11 0.9578 0.9508 0.9558 0.9544 400

33 ψ11 0.9484 0.9494 0.9534 0.9530 600

34 ψ11 0.9500 0.9502 0.9560 0.9474 800

35 ψ11 0.9554 0.9522 0.9502 0.9492 1000

36 ψ22 0.9506 0.9476 0.9451 0.9544 200

37 ψ22 0.9538 0.9506 0.9512 0.9514 400

38 ψ22 0.9474 0.9518 0.9518 0.9450 600

39 ψ22 0.9502 0.9508 0.9482 0.9488 800

40 ψ22 0.9498 0.9506 0.9440 0.9466 1000

41 ψ33 0.9534 0.9464 0.9502 0.9496 200
(continue in the next page)
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

42 ψ33 0.9506 0.9506 0.9506 0.9494 400

43 ψ33 0.9524 0.9530 0.9528 0.9476 600

44 ψ33 0.9458 0.9558 0.9512 0.9500 800

45 ψ33 0.9512 0.9518 0.9474 0.9532 1000

46 ψ44 0.9526 0.9560 0.9498 0.9566 200

47 ψ44 0.9472 0.9510 0.9540 0.9502 400

48 ψ44 0.9544 0.9514 0.9486 0.9558 600

49 ψ44 0.9532 0.9504 0.9510 0.9482 800

50 ψ44 0.9520 0.9502 0.9528 0.9486 1000

51 ψ55 0.9550 0.9492 0.9480 0.9544 200

52 ψ55 0.9542 0.9500 0.9542 0.9522 400

53 ψ55 0.9504 0.9484 0.9472 0.9516 600

54 ψ55 0.9560 0.9510 0.9524 0.9478 800

55 ψ55 0.9550 0.9504 0.9554 0.9500 1000

56 ψ66 0.9506 0.9538 0.9514 0.9524 200

57 ψ66 0.9536 0.9494 0.9488 0.9508 400

58 ψ66 0.9512 0.9516 0.9548 0.9488 600

59 ψ66 0.9458 0.9506 0.9472 0.9492 800

60 ψ66 0.9502 0.9534 0.9546 0.9478 1000

61 ψ77 0.9536 0.9474 0.9441 0.9540 200

62 ψ77 0.9480 0.9480 0.9568 0.9454 400

63 ψ77 0.9488 0.9530 0.9468 0.9436 600

64 ψ77 0.9516 0.9442 0.9506 0.9504 800

65 ψ77 0.9520 0.9508 0.9510 0.9488 1000

66 ψ88 0.9598 0.9586 0.9580 0.9562 200

67 ψ88 0.9538 0.9500 0.9546 0.9562 400

68 ψ88 0.9540 0.9494 0.9542 0.9518 600

69 ψ88 0.9562 0.9560 0.9530 0.9504 800

70 ψ88 0.9526 0.9504 0.9530 0.9498 1000

71 ψ99 0.9564 0.9554 0.9514 0.9528 200

72 ψ99 0.9514 0.9518 0.9550 0.9530 400

73 ψ99 0.9474 0.9550 0.9528 0.9556 600

74 ψ99 0.9510 0.9482 0.9450 0.9490 800

75 ψ99 0.9526 0.9498 0.9528 0.9462 1000

76 ζ11 0.9502 0.9446 0.9500 0.9558 200

77 ζ11 0.9554 0.9442 0.9504 0.9494 400

78 ζ11 0.9480 0.9502 0.9466 0.9494 600

79 ζ11 0.9548 0.9456 0.9542 0.9452 800

80 ζ11 0.9436 0.9548 0.9484 0.9504 1000
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Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

81 ζ21 0.9562 0.9494 0.9546 0.9540 200

82 ζ21 0.9516 0.9492 0.9510 0.9524 400

83 ζ21 0.9522 0.9470 0.9528 0.9526 600

84 ζ21 0.9540 0.9494 0.9504 0.9524 800

85 ζ21 0.9500 0.9496 0.9484 0.9518 1000

86 ζ22 0.9596 0.9556 0.9506 0.9520 200

87 ζ22 0.9602 0.9506 0.9508 0.9508 400

88 ζ22 0.9530 0.9520 0.9482 0.9514 600

89 ζ22 0.9512 0.9520 0.9514 0.9502 800

90 ζ22 0.9524 0.9476 0.9458 0.9452 1000

91 ζ31 0.9534 0.9472 0.9538 0.9466 200

92 ζ31 0.9504 0.9512 0.9458 0.9518 400

93 ζ31 0.9536 0.9490 0.9452 0.9474 600

94 ζ31 0.9498 0.9516 0.9538 0.9472 800

95 ζ31 0.9436 0.9520 0.9520 0.9436 1000

96 ζ32 0.9512 0.9534 0.9562 0.9532 200

97 ζ32 0.9514 0.9516 0.9504 0.9518 400

98 ζ32 0.9518 0.9500 0.9528 0.9534 600

99 ζ32 0.9554 0.9510 0.9528 0.9516 800

100 ζ32 0.9476 0.9502 0.9490 0.9530 1000

101 ζ33 0.9554 0.9498 0.9532 0.9494 200

102 ζ33 0.9480 0.9496 0.9562 0.9494 400

103 ζ33 0.9494 0.9480 0.9506 0.9526 600

104 ζ33 0.9518 0.9526 0.9482 0.9476 800

105 ζ33 0.9478 0.9458 0.9516 0.9524 1000

Table 16: Probability coverage of confidence intervals based on the Central Difference Method (CDM).

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

1 λ21 0.9482 0.9426 0.9523 0.9435 200

2 λ21 0.9450 0.9392 0.9450 0.9388 400

3 λ21 0.9456 0.9338 0.9488 0.9442 600

4 λ21 0.9394 0.9472 0.9444 0.9378 800

5 λ21 0.9412 0.9406 0.9392 0.9406 1000

6 λ31 0.9390 0.9318 0.9500 0.9371 200

7 λ31 0.9348 0.9334 0.9328 0.9328 400

8 λ31 0.9338 0.9326 0.9352 0.9354 600

9 λ31 0.9418 0.9340 0.9364 0.9336 800

10 λ31 0.9314 0.9370 0.9330 0.9394 1000

11 λ52 0.9480 0.9490 0.9530 0.9445 200
(continue in the next page)
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Table 16: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

12 λ52 0.9458 0.9482 0.9524 0.9468 400

13 λ52 0.9508 0.9470 0.9450 0.9508 600

14 λ52 0.9472 0.9450 0.9464 0.9450 800

15 λ52 0.9482 0.9436 0.9496 0.9432 1000

16 λ62 0.9462 0.9492 0.9516 0.9479 200

17 λ62 0.9506 0.9446 0.9492 0.9506 400

18 λ62 0.9502 0.9468 0.9418 0.9454 600

19 λ62 0.9486 0.9440 0.9418 0.9466 800

20 λ62 0.9478 0.9462 0.9506 0.9412 1000

21 λ83 0.9498 0.9482 0.9455 0.9513 200

22 λ83 0.9516 0.9490 0.9548 0.9552 400

23 λ83 0.9504 0.9472 0.9548 0.9540 600

24 λ83 0.9532 0.9548 0.9510 0.9534 800

25 λ83 0.9518 0.9514 0.9550 0.9490 1000

26 λ93 0.9488 0.9504 0.9457 0.9475 200

27 λ93 0.9522 0.9530 0.9500 0.9480 400

28 λ93 0.9520 0.9548 0.9540 0.9472 600

29 λ93 0.9522 0.9496 0.9528 0.9524 800

30 λ93 0.9518 0.9546 0.9506 0.9526 1000

31 ψ11 0.9450 0.9480 0.9732 0.9535 200

32 ψ11 0.9490 0.9492 0.9480 0.9484 400

33 ψ11 0.9402 0.9474 0.9486 0.9476 600

34 ψ11 0.9450 0.9466 0.9476 0.9410 800

35 ψ11 0.9490 0.9488 0.9442 0.9410 1000

36 ψ22 0.9430 0.9418 0.9443 0.9499 200

37 ψ22 0.9466 0.9474 0.9476 0.9468 400

38 ψ22 0.9442 0.9494 0.9508 0.9422 600

39 ψ22 0.9484 0.9492 0.9468 0.9466 800

40 ψ22 0.9482 0.9488 0.9422 0.9452 1000

41 ψ33 0.9470 0.9358 0.9505 0.9441 200

42 ψ33 0.9438 0.9426 0.9448 0.9446 400

43 ψ33 0.9452 0.9440 0.9474 0.9428 600

44 ψ33 0.9418 0.9490 0.9464 0.9468 800

45 ψ33 0.9480 0.9470 0.9446 0.9500 1000

46 ψ44 0.9450 0.9494 0.9516 0.9511 200

47 ψ44 0.9436 0.9502 0.9498 0.9490 400

48 ψ44 0.9520 0.9490 0.9482 0.9552 600

49 ψ44 0.9510 0.9486 0.9484 0.9448 800

50 ψ44 0.9500 0.9490 0.9510 0.9484 1000
(continue in the next page)
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Table 16: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

51 ψ55 0.9482 0.9442 0.9473 0.9495 200

52 ψ55 0.9502 0.9460 0.9522 0.9490 400

53 ψ55 0.9494 0.9454 0.9450 0.9502 600

54 ψ55 0.9544 0.9484 0.9506 0.9466 800

55 ψ55 0.9548 0.9504 0.9528 0.9484 1000

56 ψ66 0.9442 0.9480 0.9514 0.9473 200

57 ψ66 0.9496 0.9482 0.9460 0.9474 400

58 ψ66 0.9504 0.9492 0.9520 0.9474 600

59 ψ66 0.9438 0.9470 0.9464 0.9484 800

60 ψ66 0.9480 0.9520 0.9528 0.9466 1000

61 ψ77 0.9474 0.9444 0.9523 0.9491 200

62 ψ77 0.9446 0.9464 0.9548 0.9452 400

63 ψ77 0.9450 0.9512 0.9478 0.9422 600

64 ψ77 0.9490 0.9454 0.9496 0.9482 800

65 ψ77 0.9512 0.9500 0.9496 0.9484 1000

66 ψ88 0.9552 0.9556 0.9700 0.9509 200

67 ψ88 0.9510 0.9486 0.9542 0.9534 400

68 ψ88 0.9530 0.9480 0.9544 0.9510 600

69 ψ88 0.9542 0.9538 0.9498 0.9494 800

70 ψ88 0.9516 0.9488 0.9518 0.9494 1000

71 ψ99 0.9500 0.9516 0.9597 0.9473 200

72 ψ99 0.9474 0.9488 0.9528 0.9500 400

73 ψ99 0.9442 0.9526 0.9522 0.9544 600

74 ψ99 0.9506 0.9472 0.9436 0.9472 800

75 ψ99 0.9508 0.9482 0.9518 0.9460 1000

76 ζ11 0.9103 0.8866 0.9019 0.9046 200

77 ζ11 0.9040 0.8918 0.9004 0.9042 400

78 ζ11 0.8986 0.9006 0.9026 0.9056 600

79 ζ11 0.9102 0.8992 0.9088 0.8982 800

80 ζ11 0.9026 0.8986 0.8992 0.9048 1000

81 ζ21 0.9039 0.8706 0.9008 0.8952 200

82 ζ21 0.9006 0.8778 0.8912 0.9046 400

83 ζ21 0.9090 0.8762 0.8984 0.9016 600

84 ζ21 0.9104 0.8862 0.8996 0.9004 800

85 ζ21 0.9004 0.8780 0.9002 0.8964 1000

86 ζ22 0.9253 0.9152 0.9212 0.9185 200

87 ζ22 0.9234 0.9116 0.9148 0.9204 400

88 ζ22 0.9240 0.9168 0.9158 0.9240 600

89 ζ22 0.9202 0.9188 0.9144 0.9196 800
(continue in the next page)
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Table 16: continued from the previous page

Parameter MCFA-N MCFA-t MCFA-CN MCFA-SL Sample size

90 ζ22 0.9242 0.9128 0.9200 0.9138 1000

91 ζ31 0.9280 0.9056 0.9390 0.9177 200

92 ζ31 0.9300 0.9174 0.9160 0.9254 400

93 ζ31 0.9342 0.9176 0.9220 0.9240 600

94 ζ31 0.9312 0.9184 0.9326 0.9188 800

95 ζ31 0.9242 0.9208 0.9278 0.9190 1000

96 ζ32 0.9280 0.9132 0.9267 0.9259 200

97 ζ32 0.9310 0.9192 0.9210 0.9336 400

98 ζ32 0.9328 0.9138 0.9300 0.9278 600

99 ζ32 0.9350 0.9198 0.9246 0.9284 800

100 ζ32 0.9294 0.9108 0.9260 0.9286 1000

101 ζ33 0.9364 0.9340 0.9179 0.9353 200

102 ζ33 0.9338 0.9320 0.9430 0.9350 400

103 ζ33 0.9370 0.9354 0.9380 0.9416 600

104 ζ33 0.9412 0.9400 0.9384 0.9372 800

105 ζ33 0.9390 0.9332 0.9424 0.9392 1000
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