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The investigation of human face images is ubiquitous in pattern analysis/ image pro-

cessing research. Traditional approaches are related to face identification and verification

but, several other areas are emerging, like age/ expression estimation, analysis of facial

similarity and attractiveness and automatic kinship recognition. Despite the fact that

the latter could have applications in fields such as image retrieval and annotation, little

work in this area has been presented so far. This thesis presents an algorithm able to

discriminate between siblings and unrelated individuals, based on their face images. In

this context, a great challenge was to deal with the lack of a benchmark in kinship analy-

sis, and for this reason, a high-quality dataset of images of siblings’ pairs was collected.

This is a relevant contribution to the research community and is particularly useful to

avoid potential problems due to low quality pictures and uncontrolled imaging conditions

of heterogeneous datasets used in previous researches. The database includes frontal,

profile, expressionless and smiling faces of siblings pairs. Based on these images, vari-

ous classifiers were constructed using feature-based and holistic techniques to investigate

which data are more e�ective for discriminating siblings from non-siblings. The features

were first tested individually and then the most significant face data were supplied to

a unique algorithm. The siblings classifier has been found to outperform human raters

on all datasets. Also, the good discrimination capabilities of the algorithm is tested by

applying the classifiers to a low quality database of images collected from the Internet

in a cross-database experiment. The knowledge acquired from the analysis of siblings

fostered a similar algorithm able to discriminating parent-child pairs from unrelated indi-

viduals. The results obtained in this thesis have impact in image retrieval and annotation,

forensics, genealogical research and finding missing family members.
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A investigação da face humana é comum em análise de padrões/ processamento de

imagens. Abordagens tradicionais são a identificação e a verificação mas muitas outras

estão surgindo, como estimativa de idade, análise de similaridade, atratividade e o re-

conhecimento de parentesco. Apesar deste último possuir diversas possíveis aplicações,

poucos trabalhos foram apresentados até então. Esta tese apresenta um algoritmo apto

a discriminar entre irmãos e não irmãos, baseado nas imagens das suas faces. Um grande

desafio foi lidar com a falta de um benchmark em análise de parentesco e, por esta razão,

uma base de imagens de alta qualidade de pares de irmãos foi coletada. Isto é uma con-

tribuição relevante à comunidade científica e foi particularmente útil para evitar possíveis

problemas devido a imagens de baixa qualidade e condições não-controladas de aquisição

de bases de dados heterogêneas usadas em outros trabalhos. Baseado nessas imagens,

vários classificadores foram construídos usando técnicas baseadas na extração de carac-

terísticas e holística para investigar quais variáveis são mais eficientes para distinguir

parentes. As características foram primeiramente testadas individualmente e então as

informações mais significantes da face foram fornecidas a um algoritmo único. O clas-

sificador de irmãos superou a performance de humanos que avaliaram a mesma base de

dados. Adicionalmente, a boa capacidade de distinção do algorimo foi testado aplicando-o

a uma base de dados de baixa qualidade coletada da Internet. O conhecimento obtido da

análise de irmãos levou ao desenvolvimento de um algoritmo similar capaz de distinguir

pares pai-filho de indivíduos não relacionados. Os resultados obtidos possuem impac-

tos na recuperação e anotação automática de bases de dados, ciência forense, pesquisa

genealógica e na busca de familiares perdidos.
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Capítulo 1

Introduction

Human faces convey much information to other human beings and have been much in-

vestigated in the development of pattern analysis/ machine and learning techniques. For

instance, there are the identification and verification approaches, whose implementations

are ubiquitous in everyday life and have well established applications and algorithms.

The former focuses on identifying an individual among a database of many people, whilst

the latter aims at verifying whether the individual is who he says he is. In both cases, the

general idea is to perform the matching between two similar faces. Among many others,

one typical application is security.

In face image analysis, several other areas are emerging, such as: (i) a�ective com-

puting [1], which consists in improving the human-computer interface by automatically

recognizing the users’ emotional state; (ii) age estimation [2], with applications in foren-

sics, and; (iii) analyzing attractiveness [3], for surgical/ orthodontics planning. Each with

its own idiosyncrasies, possible applications and di�culties.

The problem of identifying facial kinship clues with objective pattern analysis and

image processing techniques has recently attracted the interest of researchers. Possible

applications are historic and genealogic research, automatic management and labeling of

image databases, forensic science, finding missing family members, etc. Many applications

might be conceived if the machine becomes able to discriminate kins from unrelated

people based on the inspection of their photographs. However, very few works have

been presented so far and, in particular, the field lacks a benchmark, to foster further

investigations in this area.

Automatic kinship recognition is an inherently challenging and, for this very reason,

1



CAPÍTULO 1. INTRODUCTION 2

a much interesting topic to be investigated. When analyzing the facial images of two

individuals, the computer must tell whether those subjects are related or not. In ad-

dition, di�erent degrees of kinship might be detected, as granparent-child, parent-child,

siblings and so forth. In this case, several complications emerge due to variations in

gender, age and smaller similarity between distant kins. This characterizes the field of

automatic kinship recognition as a much broader and di�cult problem than traditional

face identification.

Taking this into consideration, this work presents an original investigation in the detec-

tion of kinship cues from human faces. In the direction of gradually increasing di�culty,

only siblings were considered a priori and are treated in Part I. In this case, di�culty

is expected mostly due to di�erence in gender, since the age di�erence between siblings

are lower than more distant kins. An additional di�culty may arise from the possible

presence of twins, which might confuse the classification with identification approach.

On a second stage, parent-child pairs were considered but were not mixed with the

siblings classification. In this case, more di�culty emerge due to higher age di�erences, in

addition to the gender problem. The parent-child classification is treated in Part II, where

the knowledge gained in the previous investigation of siblings classification is applied,

conceiving a similar, but slightly di�erent approach. This strategy of first studying

siblings prior to parent-child pairs was used in order to gradually obtain insights into

the new problem of kinship recognition, given the lack of previous works to serve as

comparison. Moreover, although the algorithms used to discriminate siblings and parent-

child pairs are fairly similar, they are not strictly the same. Therefore, the parent-child

classification problem is presented in a separate part (cf. Part II).

The general idea used in both cases consists in; (i) extracting several facial attributes

from the normalized face images of two individuals; (ii) representing these facial traits

mathematically; and finally (iii) trying to discriminate between the representative vectors

of two kins and two unrelated individuals. As described before, each of these steps is

performed slightly di�erently for siblings and for parent-child pairs.

Firstly, to assert that the investigation of siblings was not a�ected by image acquisition

artifacts and database heterogeneity, a high quality database of siblings was assembled.

Such images were collected through professional photo sessions performed in the Poli-

tecnico di Torino, where students and employees attended with their family members.
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The images possess high quality and uniformity, and people were photographed in frontal

and profile poses, with neutral and smiling expressions. This database is a particularly

important contribution to the research community, specially in this new area of kinship

recognition. All databases used in this work are available for academic purposes to other

researches [4].

Secondly, several attributes were extracted from all individual faces and represented

by mathematical variables. These attributes can be; (i) geometric; (ii) holistic; and

(iii) textural and, although most of them were used in face analysis, some of them have not

been reported in the literature as e�ective for facial recognition and, therefore, they are

a contribution to the research community. In addition, prior to conceiving new attribute

extraction techniques for kinship recognition, State of the Art (SoA) algorithms must

be tested, in order to provide a reference basis for further investigation, since there are

just a few results in the literature in this specific topic. Considering the lack of high-

quality databases of parent-child image pairs, the investigation of parent-child cues was

performed using low quality images collected from the internet by previous researches.

Last but not least, the feature vectors of two individuals obtained from their correspon-

ding faces are compared, yielding the representative vector of a couple. The classification

stage is then responsible for comparing the representative vectors of two couples and

discriminating whether they correspond to kins or not. To this end, state of the art clas-

sification techniques were used with feature selection stages to improve the performance.

In particular, results have shown that the combination of features of di�erent nature

provide higher performance than when the features are used individually. In addition,

the higher the heterogeneity of the features used, the better the performance.

All image databases used in this work were also analyzed by human raters, who were

asked to tell, based on visual inspection, whether two face photographs belonged to kins

or not. Human panel experiments are commonly used in pattern analysis to provide

a reasonable basis for comparison with the learning algorithms, given their heuristic

nature. If the machine performs better than humans, it is an indication that it has

statistical relevance. Simulations performed during the development of this thesis have

shown that the machine is indeed capable of identifying siblings and parent-child pairs

more accurately than humans, which is also a relevant contribution.

A preliminary version of this work was presented in [5], where we analyzed the use
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of holistic techniques to identify siblings. In this work we present a deeper insight into

the problem and a larger set of experiments supporting the findings, relative to those

published in [6]. A very similar but slightly di�erent methodology was applied to the

discrimination between parent-child pairs and unrelated individuals, which was published

in [7].

This thesis is organized as follows. A review of the current state of the art in automa-

tic kinship recognition is provided in Chapter 2. Parts I and II present the methods and

results to automatically discriminate Siblings and Parent-Child pairs. Chapter 3 descri-

bes how the images composing di�erent siblings databases were acquired and organized.

Chapter 4 details the proposed features to describe relatedness and their rationale. The

proposed method for automatic sibling classification is given in Chapter 5. Experimental

results of siblings analysis are presented and discussed in Chapter 6. Chapter 7 presents

the classification of parent-child pairs, performed with knowledge learned from the ex-

periments with siblings. Chapter 8 shows the problem of siblings classification revisited,

using knowledge acquired from the parent-child classification problem. This structure of

the thesis was adopted to maintain coherence with results published in the literature, as

well as the chronology of the work developed. Finally, conclusions are drawn in Chapter 9.



Capítulo 2

Literature Review

The recognition of kins has been studied in diverse fields such as biology, psychology and

sociology, to name a few. In the field of evolutionary biology, Hamilton [8] put forward

the theory of “inclusive fitness”, which deals with the possible evolution of characters

benefiting or not close relatives. According to this theory, from which derives a gene-

tic model for the analysis of interactions between relatives of the same generation, one

individual can behave either (i) selfishly, where it gains fitness from others; or (ii) al-

truistically, where it loses fitness to others. In addition, what determines the subjects’

behavior is the amount of fitness quantity being exchanged and the perception of kinship

between individuals. Hamilton hypothesizes that, on average, one individual is willing to

perform an altruistic action to evolve a sibling at least twice the corresponding loss to the

self. And similarly, “siblings deprive one another of reproductive prerequisites provided

they can themselves make use of at least one half of what they take; individuals deprive

half-siblings of four units of reproductive potential if they can get personal use of at least

one of them; and so on.” Also, it is worthwhile to deprive a large number of distant

relatives in order to extract a small reproductive advantage. In simple words, Hamilton

observed that recognizing kinship and also the degree of relatedness is very relevant to

social behavior of animals and humans.

Simply put, the degree of relatedness can be obtained as illustrated in Figure 2.1,

which represents the relations between parent-children and siblings by solid and dotted

lines, respectively. The relatedness between two individuals is given by r = (1/2)n,

where n is the smallest number of lines connecting the two individuals, solid or not.

For instance, the kinship coe�cient between parent-children and siblings is 1/2, whilst

5
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A

B C

D E F G

Figura 2.1: Illustration on how to compute the kinship coe�cient (related-
ness) given by r = (1/2)n, where n is the smallest number of lines connecting
two individuals.

between subjects D and G is 1/8.

Another example of the significance of kinship recognition was presented by Bailenson

et al. [9]. They observed that the facial similarity between voters and candidates might

influence the decision of the former. This resulted from di�erent experiments where,

in general, each participant (potential voter), unaware of the manipulation imposed on

the images, was asked to choose between the photographs of two candidates, as shown in

Figure 2.2. The first campaigner would have his mugshot morphed with another randomly

chosen voter, whilst the second one would be morphed with the subject whom the question

was being asked to. Experiments showed in general that, voters prefer candidates with

whom they share facial similarities and this is especially true amid weak partisans and

unfamiliar nominees.

Research highlights that human beings have a natural capability of recognizing kinship

relationships between unknown individuals [10] and that the processes underlying kinship

and identity recognition are probably di�erent [11, 12]. Moreover, the performance in

recognizing kins decreases for smaller degrees of relatedness as shown in Figure 2.3.

The facial characteristics shared by kins can be very di�erent. For instance, although

siblings, on average, have 50% of their genes in common, there are also extreme cases

of siblings that do not seem to have any similarity between each other while conversely

Figura 2.2: Subject asked to choose between two political nominees.
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there are identical twins, whose individuality in some cases cannot be perceived by a

simple inspection of their photographs [13]. Human science researchers have investigated

the ability of human raters to recognize kinship from face images, attempting to identify

the facial features providing kinship clues. Kaminski et al. [10] reported a 66% correct

classification of kinship for siblings, using a data set of face images shot in uncontrolled

conditions. By comparison, the same raters did not exceed 73% of kinship assessment

when shown two images of the same person. Dal Martello and Maloney [14], on the basis

of a high quality data set of children images, found that the upper part of the face carries

more kinship clues.

The first computer analysis of facial features for a set of parent/child images was

presented in 2010 by Fang et al. [15]. A database containing 150 semi-frontal image

pairs, collected from the Internet, was analyzed, as illustrated in Figure 2.4. Twenty-two

facial features and small windows surrounding feature points were extracted according

to the Pictorial Structure Model. The k-Nearest Neighbors (KNN) and Support Vector

Machines (SVM) classification schemes provided accuracies of 70.67% and 68.60%, res-

pectively. The average classification accuracy of 67.19% for the same dataset was achieved

by a panel of human raters.

In Somanath et al. [16] the problem of verifying kinship on a dataset of 43 child-

parent and 26 sibling frontal image pairs, at a low resolution and shot in various lighting

conditions, was addressed by training one classifier for each of these two classes using

metric learning [17]. Feature vectors representing each pair were obtained combining

Figura 2.3: Relation between kinship assessment performed by humans and
di�erent degrees of relatedness: Id - same individual; Sb - siblings; Gp -
grandparent-child pairs; Au - aunt/uncle, nephew/niece pairs; Cs - cousins.
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local image descriptors, Gabor wavelets and intensity related information. Test samples

were labeled from the classifier providing the highest confidence, achieving accuracies of

80% and 75%, respectively, for parent-child and siblings.

Starting from the observation that the similarity between facial images of parent and

child is greater when the parent is younger, Xia et al. [18] proposed an extended Transfer

Subspace Learning (TSL) approach to simplify the identification of parent-child pairs.

TSL is meant to improve the knowledge of a new task with the transfer of knowledge

learnt from a similar, but easier task. Their key idea is to introduce an intermediate

class (containing images of parents in youth) that is close to both target classes (children

and their parents) and to learn an optimal discriminative subspace between target classes

through TSL. Classification accuracy reached 60% on a dataset collected over the Internet,

approximately 3% higher than traditional TSL. An improved version of this method [19]

achieved an accuracy of 69.7% on the same dataset, outperforming human classification

(56%).

Finally, Guo and Wang [20] identified the facial familial traits shared by a pair of

family members, as the building blocks of an automatic system for kinship verification.

Given a labelled training set, familial traits are identified by comparing pairs of corres-

ponding features (e. g. eyes, nose and mouth), and then used to compute the probability

of a new feature pair being familial or not. For two individuals, the probabilities associ-

ated to their feature pairs are stochastically combined to make a decision. The overall

accuracy, obtained on a dataset of almost frontal images in unconstrained illumination

conditions, is 75%.

This work is aimed at performing a comprehensive exploration of the computer identi-

True False

Figura 2.4: Examples of positive and negative samples of parent-child pairs
from the work of Fang et al..
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fication of pairs of sibling’ images with several pattern recognition techniques. The main

contribution of our work is twofold. First, in order to avoid problems related to the low

quality of the images used by other researchers, we constructed a dataset of high quality

images specifically collected for this research. These images depict siblings in frontal and

profile position, with and without expression and shot in controlled lighting conditions.

Second, we analyzed the discriminative capabilities of di�erent facial attributes to tell

siblings from non-siblings. These attributes, related to holistic and feature-based classi-

fication techniques, were first used singularly in various classifiers, in order to investigate

which data are more e�ective for our problem. Then, they were combined together into a

more e�ective classifier. Image pair classification is based on the Support Vector Machines

algorithm and on the integration of a two-step Feature Selection (FS) process, which led

to improvements in the classification accuracy. Given the di�usion of face identification

software, we also tested the ability of one commercial package to identify sibling pairs.

Several experiments were performed on our high quality database. The human capa-

bility to discriminate siblings was also verified on the same data. One important result is

that the classifier combining all the face data consistently outperforms the recognition ca-

pabilities of human panels. The image pair classifiers were also tested with heterogeneous

image sets, showing their generalization properties.



Parte I

Classification of Siblings

10



Capítulo 3

Image Databases

The first di�culty related to the investigation of kin recognition arises from the lack of

good image databases to work on. Although not ideal, one possible solution is collecting

images of public figures/ celebrities who are known to share degrees of kinship. From

such approach many problems arise that might seriously a�ect the investigation, such as

(i) non-uniform illumination; (ii) head pose not strictly frontal; (iii) expression not always

neutral and often with smile; (iv) variety in background patterns/colors; and (v) usage

of makeup by most celebrities, which a�ects color analysis. Not to mention di�culties

inherent to analysis of kinship as di�erent age range and ethnicity.

Taking this into consideration, a database of high quality images (resolution of 4256 ◊

2832 pixels) was collected from students and employees of the Politecnico di Torino, as

explained in Section 3.1. After that, to analyze the generalization capabilities of the

classification approach, a test database composed of low quality images of siblings’ pairs

(celebrities) from the Internet was assembled. Its properties are presented in Section 3.2.

After the databases descriptions, Section 3.3 explains all pre-processing stages implemen-

ted on each database.

3.1 High Quality database

In order to avoid unwanted interference of artifacts due to the aforementioned causes, a

database of high quality facial images of siblings was acquired. This was done by luring

several students and employees of the Politecnico di Torino and respective siblings to

attend professional photo sessions. People were asked not to wear makeup and to bring

11
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their brothers and sisters, regardless of age and gender (see Figure 3.1a). The more the

family members attending a photo session the higher the chance the person vinculated

to the university responsible for bringing them had to win one of two possible prizes (a

smartphone or a tablet PC). In this way, several photographs of di�erent family groups

were acquired under a strictly controlled environment, i. e., normalized illumination and

uniform, green background.

For an extended analysis of facial properties, some individuals were photographed

under di�erent poses and/ or expressions. The former could be frontal or profile whilst

the latter could be either neutral or smiling. Hence, each subject is represented by one

(neutral frontal), two (expressionless frontal and profile) or all four possible combinations,

i. e., neutral and smiling frontal and profile images.

During twenty days of photo sessions carried out in march 2011, 584 photographs were

taken of 208 caucasian subjects with ages varying from 13 to 50 (average 23 and standard

deviation 6, cf. Figure 3.2). 56.13% of the subjects are male. Although there are a few

family groups containing 3 and more siblings (Figure 3.1a), only one pair per group was

used to avoid influence in the final classifier. There are no pair of subjects related by

only one parent (i. e., half-siblings) in the database and no investigation is performed

for this special case, whatsoever. These numbers correspond to all images used in the

(a)

(b)

Figura 3.1: Examples of images of family groups belonging to HQfaces: (a)
three siblings, but the girl’s image is discarded due to hair occlusion; and, (b)
faces of three pairs of siblings in neutral frontal, smiling frontal and smiling
profile poses.
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experiments.

Several images had to be discarded due to some problems specified in the following. In

spite of the highly controlled environment in which pictures were taken, there were some

who either could not or should not be properly processed. This happened mainly due

to hair occlusion, which in a few cases partially covered forehead but, most importantly,

the eye, almost exclusively on profile poses. This compromised the detection of facial

landmarks, as explained in Section 3.3. The latter occurred in cases of dense facial hair,

which occluded facial properties as chin contour and skin color. When possible, such

imperfections were manually corrected (re-positioning the landmarks) but a few images

presenting one of both situations were discarded, decreasing the number pairs actually

used in the simulations. For an example, refer to the rightmost image in Figure 3.1a.

The set of siblings pairs, after exclusion of improper images, was organized into th-

ree Individual Datasets (IDSs), as shown in Table 3.1, separating sets of subjects with

common image poses:

• HQ-f : frontal expressionless images of 184 subjects (92 siblings’ pairs);

• HQ-fp: 158 individuals, each represented by one frontal and one profile expression-

less images (79 siblings’ pairs);

• HQ-fps: 112 individuals, each represented by a set of four images per individual.
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Figura 3.2: Distribution of ages of participants.
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Two expressionless frontal and profile, and two smiling frontal and profile images

(56 siblings’ pairs).

Tabela 3.1: Summary of Individual Datasets (IDS).

Set Subjects Pairs Pose
f p fs ps

HQ-f 184 92 X
HQ-fp 158 79 X X
HQ-fps 112 56 X X X X

The mean age di�erences between siblings are shown in Table 3.2, for each dataset.

This will be relevant in future discussions, where the correlation between the classification

variable with the age di�erences will be evaluated (cf. Chapter 6).

3.2 Low Quality database

In order to evaluate the generalization capabilities of the proposed classification technique

(see Chapter 5), a second database was prepared, composed of low quality images and,

therefore, coined LQfaces. It contains 196 individuals, totaling 98 pairs of siblings found

over the Internet, where most of the subjects are celebrities. The photographs have

di�erent resolutions (approximately from few hundreds to more than 3,000 pixels across).

The poses are semi-frontal. Faces often show expressions (smile), and images have been

taken under di�erent lighting conditions. Profiles and parent-child pairs are not available

in LQfaces. The individuals are 45.5% male, 87.9% Caucasian, 9.1% Afro-descendants

and 3% Asiatic. Examples of siblings in LQfaces are shown in Figure 3.3.

Both databases are available to the research community to foster further research on

the siblings recognition problem.

Tabela 3.2: Averages and standard deviations of age di�erences between si-
blings who participated in the photo sessions.

HQ-f HQ-fp HQ-fps
Age di�. (avg.±std.) 4.6 ± 4.6 4.7 ± 4.6 4.6 ± 5.2
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Figura 3.3: Four pairs of siblings belonging to the LQfaces image database.

3.3 Database normalization

In spite of the highly controlled environment in which a set of pictures is taken, they are

likely to possess heterogeneity between them, especially those collected from the Internet.

Each individual has its personal behavior in front of a camera. By leaning towards or

away from it, and rotating the head, some people might influence the outcome of an

automatic analysis by inserting non-uniformity throughout images, biasing the e�ects of

facial features, especially those relying on geometrical distances (see Section 4.1). For

these reasons, a pre-processing of all images is implemented, prior to the extraction of

facial attributes.

3.3.1 Detection of facial landmarks

The very first step implemented is the detection of facial landmarks which are a set

of points located onto key positions of the face. Such coordinates are the basis to all

following procedures of the approach and any miss-detection can compromise further

analysis.

For frontal images, 76 keypoints have been automatically computed with the Active

Shape Models (ASMs) technique [21]. ASMs are statistical shape models that are fitted to

an object in an image, combining both geometric and local appearance information. The

statistical models are learned from a training set of labeled samples through an eigenspace-

based approach. In this work, the open source implementation of ASMs available from [22,

23] has been used.

As for profile images, regardless of expression, 12 facial keypoints are identified with

an algorithm derived from [24], based on the local curvature of the profile contour and

on the local analysis of the image features.
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3.3.2 Geometric normalization

After the detection of facial landmarks, the coordinates are used to align the images in the

databases (DBs) and delimit the same area for all frontal and profile faces, including the

most significant facial features. It is obtained by making coincident two facial landmarks

with two reference points using suitable translation, rotation and isotropic scaling. These

points are a subset of the landmarks, shown in Figure 3.4. The two landmarks used for

geometric normalization of frontal images are the exterior eye corners (points 28 and 33

in Figure 3.4). The landmarks chosen for profile images are nasion (the point in the skull

where the nasal and frontal bone unite) and pogonion (the most forward-projecting point

on the anterior surface of the chin). These are, respectively, points 1 and 9 in Figure 3.4.

After geometric normalization, the face image is enclosed within a fixed rectangular

area (standard area) with the two landmarks coincident with two predefined reference

positions (Table 3.3). Observe that, in principle, this normalization could reduce the

discriminative power of some of the geometric features used for siblings’ classification,

since absolute distance measurements could be relevant. However, absolute measures are

not available for any images.

28 33

28 33

1

9

1

9

Figura 3.4: Landmarks detected on di�erent image types. The numbers in
the pictures pinpoint the elements chosen for geometric normalization.
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Tabela 3.3: Reference positions used for geometric normalization. The image
coordinate system has its origin on the top left and the x and y axes are,
respectively, horizontal and vertical.

Image type Standard area Ref. 1 (x, y) Ref. 2 (x, y)
Frontal (expressionless and smiling) 2000 ◊ 2000 (800, 800) (1200, 800)
Profile (expressionless and smiling) 2000 ◊ 2000 (1600, 800) (1600, 1200)

3.3.3 Background removal

Even after geometric normalization, the standard area background could also, potentially,

a�ect some of the extracted features. For the images in HQfaces, it has been subtracted

using a simple chroma-keying technique, since volunteers’ photos were taken placing them

in front of a green screen. Segmentation has been performed manually for the LQfaces

set. For frontal images, the chin line defined by the ASM landmarks has been used to

remove neck, shoulders and hairs as well.

3.3.4 Intensity normalization and face cropping

So far, the pre-processing stages to which all images are submitted are geometric norma-

lization and background removal. Since images from HQfaces have intensity normalized

by the time of acquisition, this step is uniquely applied to images collected from the

Internet. It is implemented by linearly mapping pixel values such that the minimum and

maximum gray levels (on each channel separately) are mapped to 0 and 255, respectively.

There is yet another feature that requires another pre-processing task. Principal Com-

ponent Analysis (PCA), also known as eigenfaces, is commonly applied to cropped faces,

excluding most hair, background and even parts of the chin. Therefore, the keypoints were

used to crop frontal and profile faces, yielding images such as those shown in Figure 3.5.

The standard areas of frontal and profile images are presented in Table 3.4, which also

includes the coordinates of the same reference points used for geometric normalization,

previously discussed in Section 3.3.2.

Tabela 3.4: Characteristics of the reduced standard areas.

Image type Standard area size Ref. 1 (x,y) Ref. 2 (x,y)
Frontal 600 ◊ 600 (100,100) (500,100)
Profile 450 ◊ 600 (300,100) (300,500)
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Figura 3.5: Examples of normalized and cropped grayscale images of an indi-
vidual in HQ-fps.



Capítulo 4

Extraction of Features

In the previous chapter, the methodology used to assemble and pre-process two image

databases (DBs) of siblings was discussed. The main DB, coined HQfaces, consists of high

quality photographs of siblings in di�erent poses and expressions, taken from students

and employees of the Politecnico di Torino. The second DB, LQfaces, is composed by low-

quality images of siblings collected from the Internet. The image processing approaches

to normalize all images were also discussed, which aim at decreasing the heterogeneity

among pictures, consequently reducing the influence of external factors into each person’s

facial characteristics.

In this chapter, the features extracted from all images are discussed. The general idea

is to represent facial attributes as distances, textures and colors in terms of mathematical

entities such as vectors and matrices. The facial characteristics and the mathematical

values chosen to represent them are supposed to be highly descriptive, in order to provide

a meaningful separation between classes. In other words, a collection of several (hopefully

inherited) facial attributes is chosen, such that the di�erentiation between the value

representing a pair of kins and the quantity describing a couple of unrelated people can

be as easy as possible. The challenge here is finding a set of facial traits that could best

represent the genetic sharing between siblings.

The facial characteristics shared by kins can be very di�erent. For instance, although

siblings, on average, have in common 50% of their genes, there are also extreme cases

of siblings that do not seem to have any similarity between each other while conversely;

there are identical twins, whose individuality in some cases cannot be perceived by simple

inspection of their photographs [13]. The similarity between parent-child pairs is similar.

19
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Supposedly, humans identify parent-child pairs by subjectively comparing phenotypic

traits of each subject as, for instance, skin/ eyes/ hair colors, eyes, nose and mouth

shapes, etc. Dal Martello and Maloney [14], on the basis of a high quality data set of

children images, found that the upper part of the face carries more kinship clues.

Since it is not clear which are the exact facial traits able to e�ectively identify pairs of

siblings, the strategy adopted in this work is to extract several features from each image.

By considering facial characteristics of di�erent nature, indeed is possible to find a set of

attributes able to automatically identify kins, even more accurately than humans, as will

be presented in Chapter 6.

Many di�erent facial attributes were taken into consideration, and they can be divided

into three main categories:

1. Geometric, focusing on geometrical positions and distances of facial landmarks.

2. Holistic, which considers the face as a whole, mixing geometric and texture information

altogether.

3. Image descriptors, responsible for the representation of the texture around each face

landmark.

For the sake of clarity, first consider Figure 4.1, which illustrates the feature extrac-

tion process of two subjects, a and b. Suppose that the subjects belong to set HQ-fp,

which contains expressionless frontal and profile images, represented by subscripts f and

p, respectively. First, K di�erent facial attributes are extracted from each image and

represented by matrices „k, k = 1, . . . , K, for each individual. The n columns of a matrix

„ are feature vectors f œ Ÿr of a given nature, as geometric distances or texture. The fea-

ture vector dimension r is independent on the pose, but the number of vectors extracted

from the image is not. The comparison between two individuals is done per attribute,

where a vector v(ab)
k is computed by the n Euclidean distances of corresponding columns

of matrices „

(a)
k and „

(b)
k extracted from respective subjects a and b, as illustrated in Fi-

gure 4.1. The final representative vector of a pair x(ab) is the concatenation of di�erential

vectors v(ab)
k computed for each attribute k and each pose.

More formally, an Image Set IS

(a) is a collection of images It representing one indivi-

dual a in an Individual Dataset (IDS). The subscript t identifies the pose of the di�erent

images used to characterize an individual and it can assume the values f and p to denote,
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Figura 4.1: Feature extraction illustration.
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respectively, frontal and profile expressionless images and fs and ps for frontal and profile

smiling images, i. e., t œ {f, fs, p, ps}.

An attribute „k,t of an image It is a collection of nk,t feature variables fkt,j, j =

1, . . . , nk,t, where fkt œ Ÿrk . The subscript k indicates the type of features extracted

from an image (e. g. the landmarks position or the lengths of their connecting segments);

therefore, all fkt are obtained with the same technique and have the same dimension rk.

Each attribute can be represented by a matrix of size rk ◊ nk,t as

„k,t =
3

fkt,1 fkt,2 . . . fkt,nk,t

4
(4.1)

or

„k,t =

Q

cccccccca

fkt,1(1) fkt,2(1) . . . fkt,nk,t
(1)

fkt,1(2) fkt,2(2) . . . fkt,nk,t
(2)

... ... . . . ...

fkt,1(rk) fkt,2(rk) . . . fkt,nk,t
(rk)

R

ddddddddb

,

where each column of the matrix represents a feature vector. The attribute �(a)
k of an

individual a, is the concatenation of all attributes „k,t extracted from the images of

di�erent poses present in IS

(a). For instance, the attributes �k of the elements of HQ-fp

are given by the matrix

�k =
3

„k,f „k,p

4
, (4.2)

which has rk rows and
ÿ

tœ{f,p}
nk,t

columns. Similarly, for set HQ-fps, we have

�k =
3

„k,f „k,fs „k,p „k,ps

4
, (4.3)

which also has rk rows but
ÿ

tœ{f,p,fs,ps}
nk,t

columns.

Finally, the characteristic vector x(ab) for a couple of individuals a and b, is given by

the vector of Euclidean distances, in their respective r-dimensional space, of the corres-
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ponding feature variables composing „

(a)
k,t and „

(b)
k,t, where subscript t is either f , t œ {f, p}

or t œ {f, fs, p, ps}. It can be easily seen that the characteristic vector of a couple is

commutative, that is x(ab) = x(ba). Figure 4.1 illustrates the process of computing vector

x for a couple of individuals in HQ-fp, which contains frontal and profile poses.

In the following section the features extracted from the images are described. The

mathematical formulation used to represent facial characteristics is introduced, and the

rationale for choosing them are also presented. The basic idea is to model facial traits

that are supposedly (or expectantly) associated with kinship relationship. According to

genetic theory, the parents genotypes determine if some of their traits are more or less

probable to be transferred to their children. Skin and eyes colors, as well as global and

local facial geometric distances are some traits that might be considered by the human

brain to determine whether two people are related or not. And, given the genetic sharing

between siblings, one can expect that such traits can provide evidences to distinguish

between siblings and non-siblings. For this reason, several features were extracted from

each face, organized into geometric, holistic and Local Image Descriptors, as described

next.

4.1 Geometric features

When asked which are the facial characteristics among siblings that are likely to be

similar, one might suggest; di�erent measurements among the face. Facial dimensions

are, intuitively, inherited between kins. Therefore, many geometric dimensions were

measured using the face landmarks detected using Active Shape Models (ASMs), as

explained in Section 3.3. These dimensions are represented by (1) euclidean distances

between corresponding landmarks of two subjects; (2) segment lengths uniting specific

key points onto each face; (3) angles between those segments; and finally, (4) ratios

between segments. These features are explained with more details in the following.

Attribute 1 (NPOS)

It contains the (x, y) normalized position of the facial landmarks. Since the two refe-

rence landmarks used for normalization have the same position for all the images of the

same type (cf. Section 3.3), the attribute dimension is 2 ◊ 74 for frontal and 2 ◊ 10 for
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profile images. For a pair, this attribute computes the distances between corresponding

landmarks in the normalized images.

Attribute 2 (SEGS)

This attribute is computed from a dense net of segments, di�erent for frontal and profile

images, defined from the Delaunay Triangulation (DT) of the average position of the

normalized landmarks over all the HQfaces of the same type (frontal and profile). The

lengths of these segments are e�ective in capturing global face shape and in describing,

directly or through segment chains, representative facial measures (e. g. distances between

mouth and eyes, mouth width, etc.). The number of segments is 184 for frontal and 25 for

profile images. The reference net obtained from DT can be seen in Figure 4.2. With this

attribute, each pair is characterized by the absolute di�erences between corresponding

segment lengths.

Attribute 3 (ANGLES)

Angles of the triangles obtained from DT. In principle, angles can be computed from

segment lengths and, therefore, they do not o�er additional information. However, as we

will show in the following, some feature variables can be discarded by a feature selection

algorithm applied before the classification. As a result, the relationship between lengths

and angles can be lost.

The angles are 342 for frontal images and 42 for profile images and the representative

vector of a pair contains di�erences of corresponding angles.

Figura 4.2: Reference segments, obtained from Delaunay Triangulation, for
frontal (left) and profile (right) images.
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Attribute 4 (DTR)

Delaunay Triangulation Ratios. This attribute contains the ratios between lengths of DT

segments having a vertex in common. Two segments are used only once to compute a

ratio, i. e., once a ratio is computed, its inverse is not considered. The rationale of using

DTR is that they are better suited than distances and angles to summarize (local) shape

similarities, being invariant to isotropic and, to some extent, even anisotropic, scaling.

For representing a frontal image, 862 ratios are considered, while for profiles, they are 92.

For a pair, the attribute contains the set of di�erences between corresponding ratios.

4.2 Holistic attribute (PCA)

Attribute 5 (PCA)

Eigenfaces, first suggested by Sirovic and Kirby [25], have been extensively used for face

image analysis in reduced dimensionality spaces. The main feature of the eigenfaces is

that they capture both facial texture and geometry. Since it is not clear yet which are

the facial elements more significant for detecting kinship clues for siblings, a first analysis

using this popular catch-all technique for feature extraction was performed.

The general idea is to reduce the dimension of face images by considering their princi-

pal components, which is a set of eigenvectors (or eigenfaces) corresponding to the higher

variance among the images being analyzed. Each original image is then projected onto

this smaller dimensional space and is, therefore, represented by the vector containing the

weights of a linear combination of the basis vectors.

The PCA was implemented on each pose set separately, to obtain the eigenfaces as

those shown in Figure 4.3, that correspond to the highest eigenvalues. One can notice that

the highest variance for frontal images is noticeable the chin contour, while other parts of

the face, like the eyes, have smaller variance, mainly due to the geometric normalization

performed as explained in Section 3.3. Similarly, the highest variance eigenfaces for

profile images, regardless the expression, highlight the profile contour, indicating this is

the feature with highest variance among di�erent images.

Before applying Principal Component Analysis (PCA) to the set of available samples,

the standard area of each individual’s image was cropped to discard as many background

pixels as possible, as previously explained in Section 3.3.4, to delimit the same section for
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Figura 4.3: Examples of eigenfaces for set HQ-fps.

all frontal and profile faces, including only the most significant facial features (forehead,

nose, mouth and chin; see Figure 3.5 for an example), and to remove as much as possible

hairs in profile images. The size of these reduced regions and the position of the reference

points inside them, are shown in Table 3.4 for di�erent datasets. To deal with images

taken in uncontrolled environments, e. g. those in LQfaces and in PCfaces, we also applied

contrast normalization.

4.3 Texture descriptors

Texture descriptors summarize the characteristics of image textures within regions. Se-

veral textural descriptors have been described in the literature. Since performing an

exhaustive analysis of all of them is extremely di�cult and out of the scope of this work,

we focused on the ones that appear promising for characterizing our data. We recall that

the image background in frontal and profile images does not influence descriptors in the

face boundaries, since it has been removed during normalization.

4.3.1 Rotation-Invariant Co-occurrence of Local Binary Pat-

terns (RIC-LBP)

The first texture descriptor is the Rotation Invariant Co-occurrence among Adjacent

LBPs (RIC-LBP), proposed by Nosaka et al. [26]. In order to derive its formulation,

a brief review of Local Binary Pattern (LBP) and Co-Occurrence of Adjacent LBPs

(CoALBP) is provided.

Local Binary Patterns

Local Binary Pattern (LBP) [27] was originally designed as a texture description for

a local region, called a micro-pattern, consisting of binary patterns that represent the

magnitude relation between the center pixel of a local region and its neighboring pixels.
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It is obtained by thresholding the image intensity of the surrounding pixels with that of

the center pixel. To obtain an LBP histogram feature for use in classification, the binary

patterns are converted to decimal numbers as labels, and then a histogram is generated

from the labels of all local regions of an entire image.

More formally, the LBP at location r = (x y)T of an image I(r) is given by

LBP(r) =
N≠1ÿ

i=0
sgn [I(r + �si) ≠ I(r)] 2i

, (4.4)

where �s is the displacement vector from the center pixel to neighboring pixels given by

�si = (s cos ◊i, s sin ◊i) ,

◊i = 2fi

N

i; i = 0, . . . , N ≠ 1 and s is the scale parameter of the LBP.

The LBP computation around a pixel of gray intensity 120 located at r is illustrated

in Figure 4.4 for N = 8. Specifically, the resulting binary pattern is 001000102 or,

equivalently 3410. The final representation of an image is given by the histogram of all

2N possible labels of all patterns.

The main advantage of LBPs is its invariance to uniform changes in image intensity

over an entire image, making it robust against changes in illumination. This is due to

the fact that it considers only the magnitude relation between the center and neighboring

pixel intensities. Owing to this characteristic, LBP has become a standard feature for

texture and face recognition, and facial expression analysis.

120

220

180

3050

80

50 90

100

Figura 4.4: Illustration of how to compute a Local Binary Pattern (LBP).
Resulting pattern is 001000102, or 3410.
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Co-Occurrence of Adjacent LBPs (CoALBP)

The original LBP does not preserve structural information among binary patterns, even

though such information may be characteristic of an image. To tackle this limitation,

Nosaka et al. [28] considered, in addition to LBPs, their co-occurrence in four given

directions.

The CoALBP considers LBP pairs, i. e.,

P(r) = (LBP(r), LBP(r + �r)) , (4.5)

where

�r = (r cos ◊, r sin ◊)

and

◊ = 0,

fi

4 ,

fi

2 ,

3fi

4 .

Parameter r specifies the distance between adjacent LBPs. Figure 4.5 illustrates how

to compute the CoALBP feature from an image. Firstly, LBPs are computed onto the

image using N = 4 (instead of typical N = 8) to reduce algorithm burden. Then, for

each direction ◊, the auto-correlation matrix for LBPs i and j are composed, generating

the 3D bar graphs shown in Figure 4.5. And finally, these matrices are vectorized into

a histogram, generating the final feature vector describing the entire image. The vector

representation is in Ÿ4N2 .

0
N-1N-1

0
N-1N-1

0
N-1N-1

0
N-1N-1

� = 0

� =
�

4

� =
2�

4

� =
3�

4

Figura 4.5: Illustration of how to compute CoALBP features from an image.
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Attribute 6 (RIC-LBP)

Now, to derive the RIC-LBP, first modify the definition of LBP pairs to

P◊(r, �r◊) = [LBP◊(r), LBP◊(r + �r◊)] , (4.6)

where

LBP◊(r) =
N≠1ÿ

i=0
sgn [I(r + �si,◊) ≠ I(r)] 2i (4.7)

and

�si,◊ = [s cos (◊i + ◊), s sin (◊i + ◊)] . (4.8)

where ◊ serves as the bias of the rotation angle in LBP. Based on the definition above,

the LBP pair of each configuration has the same value in terms of rotation.

The final RIC-LBP histogram is built in such a way that adjacent LBPs being rotated

by ◊ are summed up to the same bin, as illustrated in Figure 4.6. Firstly, adjacent LBPs

rotated by ◊ = 0, fi/4, fi/2 or 3fi/4 are labelled as equal. Then, those pairs rotated by

180¶ are analyzed. Finally, the final histogram is composed by summing the number

of each CoALBP pair, regardless of direction, as depicted in Figure 4.6. This two-step

analysis is performed to reduce the computational burden of pre-computing all possible

CoALBP rotated pairs.

To choose between di�erent LBP implementations, preliminary tests showed that

the most e�ective for Kinship Verification (KV) is the RIC-LBP, whose implementation

provides a 136 dimensional feature vector obtained from the whole grayscale image. The

di�erences of corresponding elements are stored into the pair representative vector.

Figura 4.6: Illustration on how to compute the RIC-LBP feature.
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4.3.2 Rotation-Invariant Gabor Feature (RIGF)

Attribute 7 (RIGF)

Gabor filters are widely used for edge detection and textures analysis. In our work we

used the formulation of Rotation Invariant Gabor Feature (RIGF) proposed in [29] and

illustrated in Figure 4.7, obtaining for each landmark a feature vector of dimension 96.

It is computed on a window centered on each landmark, whose width was 15% of the

distances between anchor points used for normalization (Section 3.3). This width was

experimentally found to optimize the accuracy of the RIGF feature. The representative

vector of a pair is obtained by computing the Euclidean distances between the RIGF

vectors computed on corresponding landmarks of two subjects.

GABOR DFT

Figura 4.7: Example of RIGF feature computed onto an original and rotate
texture.

4.3.3 Color descriptors

Attribute 8 - Local Color Descriptor (LCD)

Recently, di�erent types of color-based descriptors have been introduced, in order to im-

prove illumination invariance and discriminative power. According to literature [30], the

descriptors applying Scale-Invariant Feature Transform (SIFT) [31] algorithm to di�erent

color schemes show better distinctiveness properties than the one based on other image

characteristics, as histograms and color moments. The invariant properties related to

changes in lighting that they exhibit, can be defined as follows. Given the unknown light

source under which an image is taken, the changes of the illuminant in di�erent images

can be modeled as a combination of a scale factor applied to each of its (r, g, b) channels

and a constant added to it. We have a light intensity change (1) when the image values

are multiplied by the same factor; a light shift (2) when the same value is added to each

channel; a light intensity change and shift (3) is a combination of the two; a light color

change (4) is when each channel is multiplied by a di�erent scale factor; a light color

change and shift (5) is when, in addition to the previous condition, a di�erent value is
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added to each color channel. A descriptor is invariant to one of these properties when it

does not depend on changes in the conditions expressed by the property.

In other words, considering a three channel rgb color image acquired under the influ-

ence of an unknown illuminant. The new r

Õ
g

Õ
b

Õ color space of a second image acquired

under a changed illuminant can be modeled by a linear combination of the previous color

space, i. e., Y
_____]

_____[

r

Õ = fl · r + R

g

Õ = “ · g + G

b

Õ = — · b + B

. (4.9)

Depending on the scaling factors fl, “ and —, and on the shifting constants R, G and

B, di�erent variations of colors can be defined, as outlined in Table 4.1.

We experimented with the following color descriptors:

• “opponent-SIFT”, based on the opponent color space, having components o1, o2, o3,

derived from the RGB space as o1 = (r ≠ g)/
Ô

2, o2 = (r + g ≠ 2b)/
Ô

6 and

o3 = (r + g + b)/
Ô

3. Opponent-SIFT is invariant to properties 1, 2 and 3.

• “C-SIFT”, based on a model of color invariance and reflected spectrum of colored

bodies proposed in [32], which can be basically summarized by the normalized oppo-

nent colour space defined by the two components o1/o3, o2/o3. The third component

is the intensity channel. C-SIFT in invariant to property 1.

• “rg-SIFT”, encodes SIFT descriptors for the r̂ and ĝ chromaticity components of

the normalized rgb color model, where r̂ = r/(r + g + b) and ĝ = g/(r + g + b).

rg-SIFT is invariant to property 1.

• “rgb-SIFT” computes the SIFT descriptors on the RGB channels independently. It

is invariant to all properties.

Tabela 4.1: Modeling of variations in light intensity and color.

Property Light variation Scaling factors Shifting factors
1 Intensity change fl = “ = — ”= 0 R = G = B = 0
2 Intensity shift fl = “ = — = 0 R = G = B ”= 0
3 Intensity change and shift fl = “ = — ”= 0 R = G = B ”= 0
4 Color change fl ”= “ ”= — R = G = B = 0
5 Color change and shift fl ”= “ ”= — R ”= G ”= B
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These color descriptors are computed evaluating a separate SIFT descriptor for each

channel of the corresponding color models, whose size is 128 values, and concatenating

them in a single vector. The similarity between two descriptors of the same type is

represented by their Euclidean distance. With this attribute, a couple is represented by

the vector of the distances of corresponding descriptors extracted from each individual’s

image set.

4.4 Features summary

All feature dimensions are summarized in Table 4.2, where the number of rows and

columns composing each feature matrix are given for both attributes and IDS.

Tabela 4.2: Attributes dimensions.

Attribute size (size of a feature
◊ number of features)

Number of feature variables
related to the attribute for an

individual
Attribute Frontal (f) and

frontal smiling (fs)
images

Profile (p) and
profile smiling (ps)

images

HQ-f HQ-fp HQ-fps

1. NPOS 2◊74 2◊10 74 84 168
2. SEGS 1◊184 1◊25 184 209 418
3. ANGLES 1◊342 1◊42 342 384 768
4. DTR 1◊862 1◊92 862 954 1908

5. PCA 1◊157 (f) 1◊129 (p) 157 286 4791◊100 (fs) 1◊93 (ps)
6. RIC-LBP 1◊136 1◊136 136 272 544
7. RIGF 96 ◊ 76 96 ◊ 12 76 88 176
8. LID 384◊76 384◊12 76 88 176



Capítulo 5

Classification and Feature Selection

5.1 Support Vector Machines (SVM)

SVM are among the best “o�-the-shelf” supervised learning algorithms. They were ori-

ginally proposed by Vapnik [33] and improved by Vapnik and Corinna Cortes [34].

5.1.1 Intuition

Prior to discussing SVM, consider the following example as a motivational intuition.

Consider a set of randomly generated sample vectors x œ Ÿ2 belonging to two classes

represented by “points” and “circles”, as shown in Figure 5.1a. It is noticeable that

these two classes are not linearly separable on the Ÿ2 plane. However, all samples x =
3

x1 x2

4T

shown in Figure 5.1a can be mapped into the three-dimensional space using

the transformation

xÕ =

Q

ccccca

x1

x2

x

2
1 + x

2
2

R

dddddb
, (5.1)

resulting in the plot shown in Figure 5.1b, where the samples representing class “circles”

are located on the bottom of the surface. After the transformation, the data can be

linearly separable by a plane in the three-dimensional space, as shown in Figure 5.1c.

The higher the distance between the plane and the samples, the higher the confidence of

the separation, i. e., the better the classifier.

The hyperplane represents the classifier. A testing sample is firstly mapped onto the

high dimensional space and its position with respect to the hyperplane, obtained from the

33
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(a) (b) (c)

Figura 5.1: Intuition on how Support Vector Machines work: (a) randomly
generated data samples of two di�erent classes on 2D space; (b) samples
mapped into a higher dimensional space (3D), and (c) linear separation of
the data using a plane.

observation samples, is computed, defining to which class the new observation belongs to.

The goal is finding both the mapping into a higher dimensional space and the separating

plane that best separates the data. In the following a discussion is made on the concepts

of functional and geometric margins, which relate the distance between samples and the

separating plane.

5.1.2 Functional and geometric margins

More formally, consider the following mathematical formulation from [35], with a more

general set of m linearly separable samples

D =
Ó1

x(i)
, y

(i)
2

| x(i) œ Ÿn
, y

(i) œ {≠1, +1}
Ôm

i=1
. (5.2)

For the sake of simplicity, consider the particular case where n = 2, as shown in Figure 5.2.

These samples can be separated by a hyperplane defined by all points x satisfying

wT x + b = 0, (5.3)

where parameters w and b are, respectively, a vector orthogonal to the separating hyper-

plane and a scalar with an absolute value equals to the distance between the hyperplane

and the origin. Vector w is not unitary, since it is manipulated as will be explained
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further. A sample x(i) belongs to class “x” (crosses) if wT x(i) + b Ø 0; or to class “o”

(circles) otherwise. Observe that the hyperplane divides Ÿ2 in two subspaces, each of

which corresponds to one class of the binary classification problem.

In general, a linear classifier for a binary classification problem with labels y œ {≠1, 1}

and features x œ Ÿn is given by

h

w,b(x) = g

1
wT x + b

2
, (5.4)

where,

g(z) =

Y
_]

_[

1, if z Ø 0

≠1, otherwise
. (5.5)

Notice that, the classifier defined by Eq. (5.4) predicts either 1 or ≠1 based on a test

sample x(i) and parameters w and b, which are equivalent to classes “x” and “o” in

Figure 5.2, respectively.

Given one training example
1
x(i)

, y

(i)
2
, we define the functional margin of (w, b)

with respect to the training example i as follows

“̂

(i) © y

(i)
1
wT x(i) + b

2
. (5.6)

Notice that if y

(i) = 1, then for the functional margin to be large (i. e., for the prediction

to be confident and correct), wT x + b should be a large positive number. Conversely, if

y

(i) = ≠1, then for the functional margin to be large, wT x + b should be a large negative

x
x

xx
x x

x

o
o

o

o

o

o

x1

x2

w

�(i)

A

B

� b
|w|

w
T x + b = 0

Figura 5.2: Separation of two classes by a hyperplane defined by parameters
w, b.
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number. Moreover, if y

(i)
1
wT x + b

2
> 0, the prediction on this example is correct.

Hence, a large functional margin represents a confident and a correct prediction. The

function margin of (w, b) with respect to D is the smallest of the functional margins of

the individual training samples, i. e.,

“̂ © min
i=1,...,m

“̂

(i)
. (5.7)

Similarly, the geometric margin with respect to one sample is defined as the distance

“

(i) between positive sample x(i) (point A) and the decision boundary (point B), as shown

in Figure 5.2. Point B is given by

x(i) ≠ “

(i)w/|w|

since it lies on the decision boundary (Eq. 5.3). Hence, we have that

wT

A

x(i) ≠ “

(i) w
|w|

B

+ b = 0,

or

“

(i) =
A

w
|w|

BT

x(i) + b

|w| .

More generally, the geometric margin of (w, b) with respect to a training example i

(positive or negative) is

“

(i) © y

(i)

Q

a
A

w
|w|

BT

x(i) + b

|w|

R

b (5.8)

Finally, the geometric margin with respect to the entire training set D is

“ © min
i=1,...,m

“

(i)
. (5.9)

Notice that the functional and the geometric margins are related by

“ = “̂

|w| . (5.10)

Moreover, by scaling parameters |w| and b, the functional margin can be made arbitrarily

large, given that g(z) from Eq. (5.5) does not change by scaling z, and consequently,

the classifier h

w,b(x) defined in Eq. (5.4) remains unmodified. On the other hand, the
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geometric margin do not change with scaling of the parameters, since it is normalized

by |w|. Because of this invariance to scaling the parameters, when trying to fit w and b

to the training data, an arbitrary constraint on w can be imposed without changing the

actual classifier; for instance, parameters can be forced to satisfy |w| = 1, or |w1| = 4, or

w

2
1 + |w2| = 17. In conclusion, the idea is scaling parameters w and b such as to maximize

the functional margin without changing the actual classifier.

5.1.3 The optimal margin classifier

At first, considering linearly separable data, the objective of trying to find a decision

boundary that maximizes the geometric margin might seem the main goal, based on the

fact that this would result in confident predictions (a good fit to the training data). This

classifier would then properly separate positive and negative samples with a “gap” given

by the geometric margin.

Assuming that it is possible to separate all positive and negative training samples

with some separating hyperplane, the following optimization problem can be posed:

max“,w,b “

s. t.

Y
_____]

_____[

y

(i)
1
wT x(i) + b

2
Ø “

i = 1, . . . , m

|w| = 1

, (5.11)

which states that the objective is to maximize “ subject to each training example having

functional margin at least “. In addition, the |w| = 1 constraint guarantees that the

functional margin equals the geometric margin, ensuring that the geometric margins are

also at least “. Ultimately, solving this problem fits w, b to the training data with the

largest possible geometric margin with respect to the training set.

However, the imposition |w| = 1 is a non-convex constraint, making the problem

di�cult to solve using standard optimization software. The problem stated in (5.11) can

be modified to
max“,w,b

“̂

|w|

s. t.

Y
_]

_[

y

(i)
1
wT x(i) + b

2
Ø “̂

i = 1, . . . , m

, (5.12)
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which means maximizing “̂/|w|, subject to the functional margins all being at least “̂.

The |w| constraint was dropped and, since the geometric and functional margins are

related by Eq. (5.10), the problem stated in (5.12) gives the optimal geometric margin.

However, the objective function “̂/|w| still relates to a non-convex problem.

But, as discussed previously the final classifier does not change by arbitrarily scaling

parameters w and b (recall that the functional margin can be made arbitrarily large

by such scaling while the geometric margin stays the same). A new constraint on the

functional margin of w, b can be imposed

“̂ = 1, (5.13)

which can be satisfied by scaling w and b. Plugging (5.13) into (5.12), and noting that

maximizing “̂/|w| is the same as minimizing |w|2, the following optimization problem is

derived
min“,w,b

1
2 |w|2

s. t.

Y
_]

_[

y

(i)
1
wT x(i) + b

2
Ø 1

i = 1, . . . , m

. (5.14)

The optimization problem (5.14) has a convex quadratic objective function and linear

constraints, whose solution can be found using standard quadratic programming (QP)

code, which provides the Optimal Margin Classifier (OMC).

Although a standard QP code could provide a solution to problem (5.14) in the

following, a better solution is presented, utilizing the Lagrange duality. This will allow

the use of kernels to e�ciently solve our optimization problem in high dimensional spaces.

5.1.4 Lagrange duality

Problem (5.14) can be modified in such a way to permit the use of kernels, which allows

an e�cient algorithmic solution for samples belonging to very high dimension. In order

to derive this alternative, let’s first consider a constrained optimization problem given by

min
w

f(w)

s. t.

Y
_]

_[

gi(w) = 0

i = 1, . . . , m

, (5.15)
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which involves minimizing a function f subject to constraints given by gi = 0 for

i = 1, . . . , m. To solve this optimization problem, one can use Lagrange Multipliers

(LM), a strategy for finding local maxima/minima of a function subject to equality cons-

traints [36]. It consists in defining an auxiliary function called the Lagrangian

L(w, —i) = f(w) +
lÿ

i=1
—igi(w), (5.16)

and finding the solution by making

Ò
w,—iL (w, —i) = 0. (5.17)

The —

Õ
is are called the Lagrange Multipliers.

Now, consider the following, called the primal optimization problem:

min
w

f(w)

s. t.

Y
_]

_[

gi(w) Æ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l

. (5.18)

Which can be solved using the generalized Lagrangian

L(w, –, —) = f(w) +
kÿ

i=1
–igi(w) +

lÿ

i=1
—ihi(w),

where the –i’s and —i’s are the Lagrange multipliers. Consider the quantity

◊P(w) = max
–,—:–iØ0

L(w, –, —).

Where subscript P stands for primal. If a given w violates any of the primal constraints

(i. e., if either gi(w) > 0 or hi(w) ”= 0 for some i), then

◊P = Œ.

And if a given w satisfies the constraints, then ◊P = f(w), i. e.,

◊P(w) =

Y
_]

_[

f(w) if w satisfies primal constraints

Œ otherwise
. (5.19)
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So, for all values of w satisfying the primal constraints, the optimization problem (5.18)

can be rewritten as

min
w

◊P(w) = min
w

max
–,—:–iØ0

L(w, –, —), (5.20)

whose objective is by p

ú = min
w

◊P(w); called the value of the primal problem.

Observe that in the primal optimization problem, the objective is to maximize the

Lagrangian with respect to –, —. Now consider a similar optimization problem, called

the dual problem

max
–,—:–iØ0

◊D(–, —) = max
–,—:–iØ0

min
w

L(w, –, —). (5.21)

Which is exactly the same as the primal problem, except for the exchange of the “max”

and “min”. Also, let the value of the dual problem be given by d

ú
–,—:–iØ0◊D(w).

The primal and dual optimization problems are related by the observation that the

“max min” of a function is always less or equal than its “min max”;

d

ú = max
–,—:–iØ0

min
w

L(w, –, —) Æ min
w

max
–,—:–iØ0

L(w, –, —) = p

ú (5.22)

But, under certain conditions,

d

ú = p

ú
, (5.23)

so that the dual problem can be solved in order to find a solution to the primal problem.

In the following these conditions are presented.

Suppose f and each gi are convex, and each hi is a�ne. Suppose further that the

constraints on gi are strictly feasible. This means that there exists some w so that

gi(w) < 0 ’ i. Under these assumptions, there must exist wú
, –

ú
, —

ú so that wú is the

solution to the primal problem, –

ú
, —

ú are the solution to the dual problem, and moreover

p

ú = d

ú = L(wú
, –

ú
, —

ú). (5.24)
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In addition, wú
, –

ú and —

ú satisfy the Karush-Kuhn-Tucker (KKT) conditions:

ˆ

ˆwi
L(wú

, –

ú
, —

ú) = 0, i = 1, . . . , n, (5.25a)

ˆ

ˆ—i
L(wú

, –

ú
, —

ú) = 0, i = 1, . . . , l, (5.25b)

–

ú
i gi(wú) = 0, i = 1, . . . , k, (5.25c)

gi(wú) Æ 0, i = 1, . . . , k, (5.25d)

–

ú Ø 0, i = 1, . . . , k. (5.25e)

Moreover, if some wú, –

ú, —

ú satisfy the KKT conditions, then it is also a solution to the

primal and dual problems.

Equation 5.25d is called the KKT dual complementarity condition. Specifically, it

implies that if –

ú
> 0, then gi(wú) = 0. This means that the constraint gi(w) Æ 0 is

active, meaning that it holds with equality rather than with inequality. Later on, this

will be the key for showing that the SVM has only a small number of “support vectors”;

the KKT dual complementarity condition will also provide a test for convergence when

the Sequential Minimal Optimization (SMO) algorithm will be discussed.

5.1.5 Optimal margin classifiers

Recall the primal optimization problem for finding the optimal margin classifier given by

Eq. (5.14)
min“,w,b

1
2 |w|2

s. t.

Y
_]

_[

y

(i)
1
wT x(i) + b

2
Ø 1

i = 1, . . . , m

.

Since there is no equality constraint, the Lagrangian has only “–i’s” terms:

L(w, b, –) = 1
2 |w|2 ≠

mÿ

i=1
–i

Ë
y

(i)(wT x(i) + b) ≠ 1
È

. (5.26)

In order to obtain the dual of this problem, we minimize the Lagrangian with respect to

w and b for a given –,

Ò
w

L(w, b, –) = w ≠
mÿ

i=1
–iy

(i)x(i) = 0,
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which implies that

w =
mÿ

i=1
–iy

(i)x(i)
. (5.27)

The derivative with respect to b yields

ˆ

ˆb

L(w, b, –) =
mÿ

i=1
–iy

(i) = 0. (5.28)

Plugging the definition of w (Eq. 5.27) into the Lagrangian (Eq. 5.26), and considering

Eq. (5.28), yields

L(w, b, –) =
mÿ

i=1
–i ≠ 1

2

mÿ

i,j=1
y

(i)
y

(j)
–i–j

e
x(i)

, x(i)
f

. (5.29)

Equation (5.29) was obtained by minimizing the Lagrangian with respect to w and

b. Now, to derive the dual optimization problem, the following step is to maximize the

same formulation with respect to –, considering the constrains –i Ø 0 and Eq. (5.28),

i. e.,
max– W (–) = qm

i=1 –i ≠ 1
2

qm
i,j=1 y

(i)
y

(j)
–i–j

e
x(i)

, x(i)
f

,

s. t. –i Ø 0, i = 1, . . . , m,

qm
i=1 –iy

(i) = 0.

(5.30)

One can verify that the KKT conditions are indeed satisfied for this optimization problem.

Hence, one can solve the dual in lieu of solving the primal problem. Specifically, in the

dual problem above, we have a maximization problem in which the parameters are the

–

Õ
is. If the problem can be solved, i. e., one can find the –

Õ
is that maximize W (–) subject

to the constraints, then Eq. (5.27) can be used to find the optimal wÕ
s as a function of

the –

Õ
is. Having found wú, by considering the primal problem, it is also straightforward

to find the optimal value for the intercept term b as

b

ú = ≠1
2

A

max
i:y(i)=≠1

wúT x(i) + min
i:y(i)=1

wúT x(i)
B

. (5.31)

Taking a closer look at Eq. (5.27), which provides the optimal value of w in terms of

(the optimal value of) –. Supposing the model’s parameters were fit to a training set,

and now a prediction of a new input x must be made. In order to do that, one calculates

wT x + b and predicts y = 1 if and only if this quantity is bigger than zero. But, by
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Figura 5.3: Sequential Forward Selection strategy: an example (for C-SIFT
attribute and HQ-fps dataset) of the behavior of the classification accuracy
on di�erent iterations.

using (5.27), this quantity can also be rewritten:

wT x + b =
A

mÿ

i=1
–iy

(i)x(i)
BT

x + b (5.32)

=
mÿ

i=1
–iy

(i)
e
x(i)

, x
f

+ b. (5.33)

Hence, if each –i is computed, in order to make a prediction, one must calculate a quantity

that depends only on the inner product between x and the points in the training set.

By examining the dual form of the optimization problem, an entire algorithm in

terms of only inner products between feature vectors was derived. In the next section,

this property is exploited to apply kernels to this classification problem. The resulting

algorithm is able to e�ciently learn in very high dimensional spaces.

5.2 Feature Selection

Feature Selection (FS) is a data preprocessing step that is frequently applied in machine

learning. FS extracts the subset of features used to describe the data that is optimal under

certain criteria. For classification problems, the criterion to meet is the improvement of

the classification accuracy. The purposes of FS are reducing the dimensionality of the

input data, removing irrelevant information and improving the comprehension of data

and results by telling which are the most important features and how they are correlated.

Despite the fact that SVMs are generally acknowledged for their generalization capa-
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mRMR

SFS

Feature selection methodology

Figura 5.4: Illustration of the Feature Selection (FS) procedure.

bilities, their integration with FS schemes provides several improvements [37, 38]. Thus,

in this work the following robust two-step feature selection methods were applied.

First step (mRMR). It is based on min-Redundancy Max-Relevance (mRMR) al-

gorithm, whose better performance over the conventional top-ranking methods has been

widely demonstrated in literature [39]. The mRMR algorithm sorts the features that are

most relevant for characterizing the classification variable, pointing at the contempora-

neous minimization of their mutual similarity and maximization of their correlation with

the classification variable. The number of the candidate features selected by mRMR was

heuristically set to 50 for each dataset and each characterizing attribute.

Second step (SFS). The output of mRMR is a generic candidate feature set not

necessarily optimal for the chosen classifier. Therefore, we applied, as second FS step, a

Sequential Forward Selection (SFS) scheme [40]. The SFS scheme is widely used for its

simplicity. Starting from an initially empty feature set S, SFS adds, at each iteration, the

feature providing the greatest improvement of the classification accuracy until no more

improvements can be obtained. Since this stopping criterion tends to trap the algorithm

in local minima, in our approach, we proceeded with the iterations until all features were

added to S, and then we selected the feature set corresponding to the iteration that

obtained the best classification accuracy (Figure 5.3).

The two-step FS process is illustrated in Figure 5.4. The matrix composed for each

dataset is illustrated on the left. Each of its rows is a representative vector of a couple

v(a,b) computed as illustrated in Figure 4.1. The columns are then firstly selected by the

mRMR algorithm. Then, the SFS algorithm is applied to the chosen features, yielding

the final set composed of the “best-of-the-best” features.

Finally, the entire algorithm is illustrated in Figure 5.5. It is based on Dissimilarity-

Based Classifications (DBCs) [41]. The first step consists in normalizing all images from
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all Pair Datasets (PDSs). Then, features of di�erent nature are extracted, so that each

image is converted to a mathematical representation. Then, these representations are

combined to compute the representative vectors for each sample, i. e., a pair of siblings

(positive) or non-siblings (negative). Finally, a two-step feature selection scheme, associ-

ated with SVM classification is applied onto these datasets to extract the characteristics

that show more descriptive capabilities related to the siblings classification problem.

|| · ||

Normalized images
of subject a Attribute extraction

Holistic PCA(a)

v(a) = {NPOS(a),...,LID(a)}
v(b) = {NPOS(b),...,LID(b)} v(ab)

Geometric
NPOS(a) DTR(a)

Textural
RIGF(a) LID(a)

HQ-f

HQ-fp

HQ-fps

For each attribute/attribute group: 
computation of pair characteristic vectors

Classification

{v} Feature 
Selection SVM+

Figura 5.5: Outline of the sibling recognition process.



Capítulo 6

Results and Discussion

This chapter presents the results obtained during the development of this thesis. Given

the heuristic nature of the proposed investigation, i. e., considering that the concept of

similarity of faces is much more encompassing than the concept of identity, several si-

mulations were executed using di�erent configurations, parameters, machines, platforms,

programming languages, etc, as well as software developed by third parties. As dis-

cussed previously, the kinship recognition problem has been proposed recently in the

pattern analysis/ machine learning field. Due to the lack of touchstones available at the

beginning of the investigation, a comprehensive number of experiments attempting to

e�ectively identifying siblings was performed. Although an extensive discussion of the

details of all experiments is not provided here for brevity, some relevant observations

and results are presented. In spite of the fact that these initial observations did no pro-

vide good numeric results, they guided the research through di�erent paths, ultimately

providing relevant results.

A brief overview of unsatisfactory results is presented in section 6.1. Sections 6.2

through Section 6.5 discuss the relevant results published in [5, 6, 7].

6.1 Preliminary observations

This section describes the first steps that matured the investigation toward the e�ective

discrimination between siblings and non-siblings. Although not significant in accuracy,

the observations were important in guiding the research towards the final relevant results

presented in Section 6.2 through Section 6.5.

46
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6.1.1 Analysis of facial distances

The very first attempts to classify siblings were performed considering geometric distances

obtained from the faces. This is an intuition of facial similarities. In other words, since

kins are likely to share phenotype traits, relative distances throughout the face could be

considered to contain kinship information. Several initial facial distances were tested,

such as the distances between:

- left and right eyes;

- nose tip and mouth;

- mouth to chin tip;

- eyes to nose tip; etc.

In addition, several geometric properties of the face were tested, such as:

- nose length;

- length between the lateral alas of the nose;

- mouth width;

- eyes, eyebrows and mouth circumscribing perimeters;

- perimeter of chin contour;

- relations between facial segments, such as the ratio between horizontal and vertical axes

of ellipses fitted to eyes, mouth, eyebrows and nose landmarks, etc.

However, such punctual geometric distances provided unsatisfactory results, achieving a

maximum of ¥65% accuracy. When applying the classification algorithm based on SVM

with grid optimization of the SVM parameters “ and C (cf., Section 6.5), for instance,

the accuracy optimization is shown in Figure 6.1 when the feature being extracted is the

distance between nose tip and mouth center. Notice that an accuracy of 63% is achieved,

which gives some indication that distances can be used for the classification. However,

a more comprehensive and systematic scheme for the extraction of geometric features

should be considered.
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Figura 6.1: Optimization of SVM parameters yielding a 63.2% accuracy in
siblings classification considering only the euclidean distance between nose
tip and mouth.

These first observations of the classification performance using geometric distances

led the investigation to the use of Delaunay Triangulation (DT) for the extraction of a

considerable dense net of segments from the faces. Specifically, the use of ratios between

Delaunay Triangulation segments (cf., Section 4.1) was motivated by these observations.

Indeed, ratios between facial segments are considerably e�ective in the classification of

siblings (cf., Section 6.5) and parent-child pairs (cf., Section 7.3).

6.1.2 Siblings classification using only eigenfaces

Another question asked in the beginning of the research was if siblings could be discrimi-

nated using only their holistic representation. To answer this question, the simplest way

of extracting holistic information from the faces, namely, Principal Component Analysis

(PCA), was used (cf. Section 4.2). The rationale was that:

- given the simplicity of the PCA method, any other accuracies obtained with di�erent

characteristics should outperform those provided by PCA, and;

- by describing each face as a linear combination of the eigenfaces associated with the

highest variance of the data, some facial characteristics related to the siblings clas-

sification problem could be highlighted by observing the eigenfaces surviving the FS

pruning.

Figure 6.2 shows some eigenfaces associated with the highest eigenvalues in decreasing

order of importance from left to right and top to bottom for the expressionless frontal
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(a) (b)

Figura 6.2: Most relevant eigenfaces for the siblings classification problem in
decreasing order of importance from left to right and top to bottom: (a) best
eigenfaces for HQ-f PDS, and; (b) best eigenfaces for LQfaces dataset.

high quality Pair Dataset (PDS) HQ-f (Figure 6.2a) and the low quality dataset LQfaces

(Figure 6.2b) after the implementation of the classification and feature selection algo-

rithm.

6.1.3 Scale-Invariant Feature Transform (SIFT)

Another investigation used the Scale-Invariant Feature Transform (SIFT) [31] and the

Speeded Up Robust Features (SURF) [42] onto grayscale images. The latter has similar

descriptive capabilities in comparison with the former, but is much faster to compute.

They are aimed at detecting invariant keypoints from an image and describing each

keypoint by a vector for posterior matching. They are widely used for object detection

and recognition. Our implementation considers only the description of image windows

centered on each facial landmark obtained onto the face as explained in Section 3.3.1,

i. e., we did not detect invariant keypoints from SIFT and SURF algorithms. Rather,

we used only their techniques in describing each window around each landmark. SIFT

provides a 128-dimension feature vector for each of the 76 frontal and 12 profile keypoints.

On the other hand, SURF provides a 64-dimension feature vector for each of the facial

landmarks.

Both SIFT and SURF algorithms are patented and this work makes no claim about

their copyrights whatsoever. Their open-source implementation can be found in ver-

sion 2.1 of the Open-Source Computer Vision library (OpenCV) [43] for non-commercial

purposes.
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One first observation was the descriptive superiority when using descriptors compu-

ted around each landmark using SIFT and SURF in comparison with punctual geometric

distances as discussed previously in Section 6.1.1. For instance, SIFT achieved a classi-

fication accuracy of 71% and 65% for expressionless frontal and profile datasets, as can

be appreciated in Figure 6.3. This decrease in accuracy for profile poses are likely due to

the small amount of texture information contained in profile images.

Another observation worth mentioning is related to the window size used to compute

each descriptor or, equivalently, the amount of blur applied to di�erent scales of the

original image. It was observed that as the window size increases, there is an optimal

value in the ultimate classification accuracy of siblings and non-siblings, as is illustrated

in Figure 6.3. Empirically, the width of the window that optimizes the final accuracy was

found to be approximately 40% of the distance between anchor points � (the exterior

corners of the eyes for frontal images and nasion and pogonion for profiles – cf. Figure 3.4).

This value was observed for both HQfaces and LQfaces and di�erent values of �.

Another relevant observation emerged from the analysis of pruned SIFT features.

After the feature selection process, we wanted to observe which landmarks were more

often selected throughout di�erent Pair Dataset (PDS). For this experiment, five PDSs

were built using the positive siblings pairs of each Individual Dataset (IDS) and an equal

number of randomly chosen negative pairs. Then, SIFT descriptors were extracted and

were processed by the FS algorithm. Their final contributions to each of the five PDSs

were summed and the result is shown in Figure 6.4. It is quite clear that the portions

of the face contributing the most to the final sibling classification are the eyes and the

mouth.

These observations led to the investigation of more robust features that, although still

based on SIFT, considered all color channels, as explained in the next section.

6.1.4 Color descriptors

As described in Section 4.3.3, we tested di�erent color descriptors. Experiments following

the same protocol explained in the previous section yielded the results shown in Figure 6.5,

where the squares highlight the regions where the color descriptors contribute the most

to the final classification using five randomly chosen datasets..

Finally, we considered the features presented in Chapter 4 to obtain the most relevant
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results that are presented in the following sections.
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Figura 6.3: SVM classification for datasets composed of sift and surf descrip-
tors computed using di�erent window sizes. (a) Frontal expressionless image
of one individual from HQ-f. (b) SVM accuracies for SIFT and SURF using
di�erent window sizes. (c) Expressionless profile image from HQ-fp. (d) SVM
accuracies for SIFT and SURF computed with di�erent window sizes.

Figura 6.4: Features selected after the two-step feature selection applied to
the SIFT obtained from frontal HQ images.
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6.2 Discriminating between siblings and non-siblings

The performances of automatically classifying pairs of siblings are presented in this sec-

tion. By analyzing such close kins with high relatedness coe�cient (r = 0.5, cf. Fi-

gure 2.1), the goal is to obtain a robust basis in the investigation of kinship recognition,

given that there are only a few studies in this area. Further steps consist in gradually

taking kins with lower relatedness into account. For instance, when adding parent-child

pairs to the analysis, the age di�erence is very likely to increase the complexity of the

problem.

Recalling from Chapter 3, the siblings classification investigation is performed using

the following image databases:

• HQfaces, containing high-quality images of siblings;

• LQfaces, composed by low-quality images of siblings (mostly celebrities) gathered

from the internet.

Therefore, for the sake of clarity, all relevant results obtained in simulations and com-

piled into this chapter are organized as follows. Firstly, Section 6.3 shows the human

panel classification of siblings. The human’s judgment in classifying siblings is funda-

mental to assess the performance of the developed classifiers. Secondly, Section 6.4 shows

the performance of a commercial face identification software applied to siblings recogni-

tion (both HQfaces and LQfaces datasets). This analysis was a first attempt in analyzing

if the kinship recognition can be tackled by a traditional identification algorithm. Finaly,

Figura 6.5: Features selected after the two-step feature selection applied to
the Local Color Descriptor obtained from frontal HQ images.
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a more robust classifier is developed using all features discussed previously in Chapter 4,

and are presented in Section 6.5.

6.3 Human classification

In order to asses the quality of our results, given the lack of touchstones, we intended to

compare, on the same datasets, the capabilities of our automatic classifier with that of a

panel of human raters. In the experiments, people were asked to evaluate if a couple of

image sets depicted or not two siblings.

To this purpose, we presented the siblings pairs on an Internet site, to obtain Human

Panel (HP) results. For each of the three Pair Datasets (PDSs), its pairs were presented

one by one to each human rater in a random order, on a page where the images of

each individual’s Image Set (IS) were aligned in a row (cf. Figure 6.6). Members on the

panel were informed that some of the pairs were siblings, but they were not told in what

percentage. Members were asked to provide a YES (the two individuals are siblings) or

NO (they are not) answer for each pair. In total, we collected 213.396 answers from 2.929

people; an average of 444±0.5 answers for each pair was obtained.

Although the experiment was performed using an international website and many

people outside Italy participated in it, the majority of voters were somehow associated

to the Politecnico. This suggests that some siblings/non-siblings pairs could be correctly

classified based on a previous knowledge of the voter about one or both individuals

depicted in some questions. However, we did not expect to observe much bias in the

ratings due to the large number of votes per sample.

The ratings showed a significant congruence between genders and age ranges of the

volunteers. For instance, the Pearson’s correlation between the classifications of the two

genders was 0.88.

The results obtained in the HP experiment were examined based on a score s œ [0, 1].

For a given pair of subjects, s was computed from the fraction between the number

of people guessing that the couple is related by the sum of all votes for that couple.

And, if s Ø 0.5, humans classified the couple as two siblings, otherwise they guessed

that the two individuals are unrelated. The percentage of correctly classified pairs are

shown in Table 6.1 for each dataset belonging to HQfaces. It was not possible to collect
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(a)

(b)

Yes No

Are they siblings?

(c)

Figura 6.6: Example images presented in the questionaire answered by mem-
bers of a human panel; (a) positive pair belonging to set HQ-fps; (b) negative
pair belonging to set HQ-fp; and (c) question to be answered with YES/ NO
options.

human expert ratings for the LQfaces dataset, since it is composed mainly by well-known

personages and hence likely to produce biased ratings.

The highest performance in Table 6.1 (75.22%) was achieved when the most informa-

tion available was presented on the questionnaire, i. e., when people were able to look

at all possible poses and expressions of couple images (cf. Figure 6.6a). Based on this

result, the automatic classifier should also perform better for this dataset specifically, and

preferably, with accuracy higher than 75.22%. The following sections show that, indeed,

it is possible to build an automatic classifier for siblings which outperforms the human

ability in telling siblings from non-related couples.

Tabela 6.1: Classification results from the human panels experiment.

HQ-f HQ-fp HQ-fps
Classification (%) 72.55 71.34 75.22
False Positive Rate (%) 0.98 1.22 1.77
False Negative Rate (%) 26.47 27.44 23.01
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6.4 Commercial software

The concept of similarity of faces is much more encompassing than the concept of “iden-

tity”. However, we believe to be interesting attempting to recognize pairs of siblings using

an e�ective commercial identity recognition software, given the popularity of such appli-

cations. For this task, we selected the FaceVACS R• Software Development Kit (SDK),

supplied by Cognitec Systems [44]. A previous version of this software was tested in

the Face Recognition Vendor Test (FRVT) 2006, obtaining excellent results in identity

recognition [45].

When the SDK analyzes a pair of images, it provides a score value s œ [0, 1]. The

higher the score, the higher the probability the images are from the same subject. Since

siblings are likely to share facial attributes, one can suppose that the score between two

siblings should be higher than the score between two unrelated people.

Indeed, FaceVACS can provide an initial insight when dealing with sibling images.

We experimented FaceVACS on both databases, HQfaces and LQfaces, with all pairs of

siblings and with an equal number of randomly selected non sibling pairs. As for the

HQfaces we applied the recognition software only to the expressionless frontal images of

an individual, since FaceVACS claims to provide higher scores with such images. The

histograms of the scores of pairs of siblings and non siblings show that no pair of non

siblings scored higher than 0.4 for LQfaces and 0.5 for HQfaces (Figure 6.7). A fixed

threshold might guarantee a null False Acceptance Ratio (FAR), but it strongly penalizes
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Figura 6.7: Histograms of scores provided by FaceVACs-SDK for pairs of
siblings and non-siblings in: (a) HQfaces and (b) LQfaces (on the bottom).
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Figura 6.8: ROC curves obtained from applying FaceVACS to both LQfaces

and HQfaces.

the False Rejection Ratio (FRR), since there are many siblings’ pairs with scores lower

than this threshold. For instance, to obtain a null FAR, the FRR is 78.12% for LQfaces,

and 82.47% for HQfaces. The tradeo� between the false acceptance and the verification

rate can also be verified with the ROC curves shown in Figure 6.8.

These results show that if the score of a couple of images is above these thresholds,

they are likely to belong to siblings, otherwise, another algorithm should be used to make

the decision. Concluding, the problems of identification and siblings’ recognition appear

rather di�erent and an identity recognition software could not be able to provide e�ective

sibling identification.

6.5 Automatic siblings classifier

As already explained in Chapter 3, the HQfaces database was collected with the speci-

fic purpose of assessing the accuracy of the proposed approach on samples collected in

controlled conditions. We recall that HQfaces images were divided into three Individual

Datasets (IDSs) according to their characteristics. In each IDS, given a set of N indivi-

duals and considering that there are no groups of three of more siblings, we have N/2

pairs of siblings and, potentially, N(N ≠ 2)/2 pairs of non-siblings. For each IDS, we

created a Pair Dataset (PDS) containing all positive pairs, the N/2 pairs of siblings, and

an equal number of randomly chosen negative, non-sibling, samples. For simplicity, in

the following, the PDSs have the corresponding names of the IDSs used to build them

(i. e., HQ-f, HQ-fp, HQ-fps).
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For each PDS the attributes described in Chapter 4 were extracted and used to cons-

truct di�erent classifiers according to the method outlined in Chapter 5. Results were

assessed using stratified five-fold Cross-Validation (CV) and, hence, the average classi-

fication rates of the SVM classifier over the di�erent CV rounds are reported. For the

SVM classifier, a Radial Basis Function (RBF) kernel

K (xi, xj) = e

≠“||xi≠xj ||2
, “ > 0, (6.1)

was used and parameters “ and C are optimized using a grid search defined by

log2 “ = ≠4, ≠3, . . . , 1, (6.2)

and

log2 C = ≠1, 0, . . . , 3, (6.3)

as suggested in [46].

In the first experiments, the classification accuracies were computed based on each

attribute separately. Then, they were evaluated by characterizing each individual with th-

ree di�erent groups of attributes. The first two, named GEOMETRIC and TEXTURES,

gather together, respectively, all geometric and texture attributes, in order to understand

if geometric or textural properties alone can discriminate properly between siblings and

non-siblings. The last group, named ALL, concatenates all the described attributes to

evaluate if the combination of characteristics of di�erent nature provides a better solution

to the problem. Concerning the FS process for these attribute groups, the set of feature

variables used by the classifier for each PDS were obtained by first concatenating the

optimal set computed applying FS to each attribute separately, and then again applying

the FS algorithm to the resulting feature sets. This process can be seen as the selection

of the “best of the best” features and, in preliminary tests, consistently provided better

results than applying FS directly to the concatenation of all attributes.

The classification results are summarized in Table 6.2, where the classification accu-

racy (Acc. ± deviation) and the number of features selected by the FS algorithm (NFS)

are reported, for each PDS and for each attribute or attribute group. These values are

presented in Figures 6.9 and 6.10, to best illustrate the tendencies enumerated in the
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Tabela 6.2: Classification results, showing for each PDS and for each attribute
or attribute group, the classification accuracy (Acc) and the percentage of fe-
atures selected by the FS algorithm (NFS). Higher accuracies are highlighted
with brighter backgrounds.

Pair Dataset (PDS)
HQ-f HQ-fp HQ-fps

Attribute Acc(%) NFS (%) Acc(%) NFS (%) Acc(%) NFS (%)
1 NPOS 63.8 ± 6.3 34 69.6 ± 4.7 28 77.7 ± 5.6 22
2 SEGS 74.4 ± 4.7 62 77.2 ± 5.3 34 83.9 ± 4.5 48
3 ANGLES 71.9 ± 5.4 12 76.0 ± 7.1 28 85.7 ± 2.8 34
4 DTR 76.3 ± 9.6 18 79.7 ± 5.1 58 86.6 ± 7.2 24
5 PCA 73.8 ± 9.8 34 75.3 ± 11.2 20 76.8 ± 7.9 42
6 RIC-LBP 70.6 ± 5.3 72 67.1 ± 4.8 10 74.1 ± 6.6 16
7 RIGF 76.2 ± 4.8 44 74.1 ± 3.4 48 75.9 ± 5.4 20
8 LID 80.6 ± 6.7 20 76.6 ± 4.8 60 80.4 ± 2.3 34
GEOMETRIC 76.7 ± 7.4 25 84.2 ± 3.3 39 87.0 ± 4.4 38
TEXTURES 79.4 ± 6.7 13 79.7 ± 4.5 19 83.9 ± 5.0 29
ALL 81.9 ± 8.8 11 84.2 ± 5.3 17 88.4 ± 6.8 27

following remarks. The student’s t test confirmed the accuracies mean values within a

5% significance level.

The following remarks can be made on the classification results summarized in Ta-

ble 6.2:

1. The more information available, i. e., the more poses analyzed, the higher the

accuracy of the classifier. Profile and expressions significantly improved the classifi-

cation results, as can be seen in Table 6.2, where results for set HQ-fps consistently

outperform those for set HQ-fp, which are in turn better than those for set HQ-

f. The only exception is represented by results on C-SIFT attribute, whose best

performance was obtained on set HQ-f.

2. Frontal and profile images obtained on the average similar accuracies, exception

made for textural descriptors and their combination, which performed bad. The

weakness of the textural characterization of profiles is also underlined by the low

number of selected features, which seems to indicate that just a very few regions

around the facial landmarks contain relevant texture that might be useful for the

proposed problem. Results showed that these points are the corners of the eye and

mouth, and the nose wing contour.

3. Concerning geometric attributes, landmark positions alone did not provide signi-
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Figura 6.9: Illustration of the accuracy values of individual attributes from
Table 6.2.

ficant results. As expected, lengths and angles obtained similar results since they

describe correlated information. Segment rations (DTR) were consistently better

than any other geometric attribute, suggesting their superior capability in descri-

bing local similarities, and variations, of face shapes.

4. As for textural descriptors, C-SIFT obtained the best accuracies for all the PDSs,

showing they are more suited to capturing the sibling characteristics. On the con-

trary, RIC-LBP provided, in most cases, poor performances.

5. The single attribute providing the best average result was DTR, immediately fol-

lowed by C-SIFT; the holistic attribute (PCA) did not perform as well compared

to them.

6. Grouped attributes performed better than their single components and the combi-

nation of all possible attributes provided the highest classification on all datasets.

That is, the more heterogeneous the information, the better the performance. The

only exception was TEXTURES applied to HQ-f, but the small di�erence with its

best individual attribute (1.2%) can be explained in terms of the greedy nature of

the heuristic FS algorithm.

7. The classifier achieved up to 88.4% of correct recognitions for set HQ-fps, 84.2% for

set HQ-fp and 81.9% for set HQ-f. Although apparently good, it is not possible to

directly evaluate their quality or to compare them with that of other approaches
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Figura 6.10: Illustration of the accuracy values of grouped attributes from
Table 6.2.

(such as [16]) since they were obtained on di�erent data. In the next subsection we

propose such an evaluation through the comparison with the classification results

obtained on the same data by a panel of human raters.

Analysis of the Feature Selection process.

As expected, FS always significantly increases accuracy. The general behaviour for di�e-

rent attributes is that the second FS step provides a major accuracy improvement over

the first step (see as an example the results in Table 6.3). The large di�erences with the

results computed on the initial feature sets, where no FS was applied and the classifi-

ers were based on a much greater number of features than the number of observations,

highlight as well the capabilities of FS to prevent overfitting.

Tabela 6.3: Classification accuracies (using ALL attributes group) applying
SVM to (i) the initial feature set (NOFS), (ii) the reduced feature set ex-
tracted by mRMR (FS1) and (iii) the final feature set obtained by combining
mRMR and SFS (FS2).

HQ-f HQ-fp HQ-fps
Acc. Di�. Acc. Di�. Acc. Di�.

NOFS 70.6 - 70.9 - 80.4 -
FS1 75.0 4.4 73.4 2.5 82.1 1.7
FS2 81.9 6.9 84.2 10.8 88.4 6.3
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The FS process raises another question. Both mRMR and SFS are heuristics that are

dataset dependent. This means that their application to di�erent datasets are likely to

produce optimal sets containing di�erent features. How does this a�ect the generalization

capabilities of the classifier?

Further experiments showed that the most significant features to discriminate siblings

are relatively stable with respect to the pair dataset used. Furthermore, the features

selected for a dataset, even if not optimal, still provide good classification accuracies on

di�erent datasets. In detail, we created, for each IDS, five more random PDSs, composed

by an equal number of siblings and non-siblings. Then, for each PDS, we compared two

classifiers built, respectively, (i) on the optimal feature set computed by applying FS to

each PDS and (ii) on the (sub-optimal) feature sets computed from a di�erent dataset,

namely the corresponding PDS used to build Table 6.2. The average di�erences in their

accuracies are low (few percentage points). Though further investigations with larger

datasets would be necessary, these results are believed to support the intuition that the

classifiers are quite robust with respect to the selected feature sets.

The analysis of the features surviving the FS pruning can provide some insights into

the more relevant facial characteristics to recognize siblings. Grouping geometric attri-

butes, NPOS variables are mostly discarded and DTR and ANGLES appear to be the

most relevant. C-SIFT provides by far the most relevant contribution to the TEXTURE

groups, while RIC-LBP can be considered marginal. In the ALL group, all types of featu-

res (i. e., geometric, holistic and texture descriptors) are present, with a slight preference

for C-SIFT and DTR and features from all image types are considered (cf. Figure 6.11).

Although these results are dataset dependent, they suggest that (i) the combination of

features with di�erent characteristics provides a substantial improvement of the accu-

racy and (ii) information from di�erent images of the subject is e�ectively combined to

improve the classification results.

Influence of age di�erence

One interesting result is that the classification of pairs is completely independent from

the age di�erence of their individuals. For example, its correlation with the classification

variable in the ALL experiment falls within range [-0.050,-0.008] for di�erent PDSs (cf.

Table 6.4). However, the average age di�erence was rather low (4.6 years) and experiments
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Figura 6.11: Proportions of chosen features selected from SFS applied to ALL
attribute group.

on more challenging datasets are required to fully understand the influence of age on the

final performances.

Other experiments

In order to understand if these results are due to the discriminating capabilities of chosen

features or to the classification method, the SVM was compared to di�erent classifi-

cation techniques. Results have shown that SVMs performed consistently better (cf.

Figure 6.12). But the average di�erences of few percentage points obtained on the three

PDSs, with the ALL attribute group, by k-Nearest Neighbors (-6.0%), Bagging Trees (-

5.5%), and Random Forests (-2.8%), suggest that is the design of the features that really

makes the di�erence.

Finally, individual poses were tested separately (frontal, profile, expressionless and

smiling faces) from HQ-fps, besides concatenating all of them. For each image type, we

built a Pair Dataset Frontal (PDF) using the same negative and positive pairs of indivi-

duals used in the HQ-fps PDF. The best results obtained are very similar (between 80.4%

Tabela 6.4: Correlation between the classification variable and age di�erences.

Dataset HQ-f (%) HQ-p (%) HQ-fp (%) HQ-fps (%)
ALL -0.020 -0.050 -0.008 -0.030
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Figura 6.12: Results of other classification techniques.

and 84.8%), with expressionless images scoring slightly better than smiling faces (+4.4%

and +2.0% for, respectively, frontal and profile faces). The comparison with 88.4% of

the HQ-fps PDF shows that their combination is indeed e�ective to improve the classifi-

cation accuracy. Five-fold cross-validation is performed in all cases and the parameters

used were the default parameters for each classifier implemented by the MatlabArsenal

package, whose specifications can be found in [47], except for SVM, where the parameters

used were specified in Section 5.

Another comparison can be made with the results obtained by FaceVACS. The classi-

fication of HQ-f images, using a threshold of 0.5 on the FaceVACS score, had an accuracy

of 55.5%, which gives a further indication that the commercial face recognition software

cannot suitably tackle the sibling identification problem.

Comparing automatic and human classification

In order to assess the quality of these results, given the lack of touchstones, the perfor-

mance of the automatic classifier was compared with that of a panel of human raters who

were asked to evaluate if a pair of image sets depicted two siblings or not (cf. Section 6.3).

In order to perform a meaningful comparison with the classifier, we transformed the

average ratings of the human panel (HP) into the value that obtained the majority of

Tabela 6.5: Classification accuracies per pose of faces belonging to set HQ-fps.

f p fs ps
GEOM. 79.5 84.0 80.4 82.1
TEXT. 82.1 73.2 78.6 75.9
ALL 84.8 80.4 77.7 79.5
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votes for each pair. The best results obtained by the automatic classifier (based on

the ALL attribute group) outperformed that of the HP on all PDSs. The di�erences

in accuracies were +9.3% for HQ-f dataset and +12.9% and +13.2% for, respectively,

HQ-fp and HQ-fps (Table 6.6).

These results are believed to emphasize the validity of the classification method.

Generalization properties of the classifier

Lastly, one last question must be answered: what are the generalization properties of the

classifier? Or, in other words, how well does it behave on unseen data? Theoretically,

it should behave well since several researches in literature support the claim that SVM

has good generalization characteristics. These properties stem from the maximization

of the margin of the hyperplane separating the two classes that, in turn, leads to the

minimization of the generalization error. We tried to answer the initial question in the

following way:

• we trained a classifier with all samples in the frontal pair dataset rated by the

human panel (HQ-f ); the classifier was based on the 16 variables from the ALL

attribute providing the best classification accuracy for this dataset (Table 6.2);

• we built a test set from LQfaces, containing the 98 siblings pairs and an equal

number of randomly chosen non-siblings pairs;

• we classified the test set.

With such experimental settings, one point to discuss is about the color descriptors

used in the classifier. As stated in Section 4.3.3, C-SIFT was the local descriptor providing

best results for the HQfaces datasets. However, C-SIFT is only invariant to light intensity

Tabela 6.6: Comparison of automatic and human classification of di�erent
datasets.

Accuracy (%)
HQ-f HQ-fp HQ-fps

Human classification 72.6 71.3 75.2
Automatic classification 81.9 84.2 88.4
Di�erence 9.3 12.9 13.2



CAPÍTULO 6. RESULTS AND DISCUSSION 65

changes and, probably, it is well suited to classifying such images since they were shot in

a controlled environment.

When dealing with images with more general properties, such as the ones in LQfaces

dataset, color descriptors with higher invariance are likely to provide better results. To

verify this assumption, we built di�erent classifiers for HQ-f again grouping all the at-

tributes but substituting C-SIFT with another descriptor. In each case, we applied the

“best of the best” technique to compute the optimal feature set.

The best classification accuracy was obtained with rgb-SIFT (78.5%) and it was sligh-

tly better than that obtained by opponent-SIFT (77.3%); it should be noted that rgb-SIFT

is the only descriptor introduced in Section 4.3.3 that is invariant to all properties, while

opponent-SIFT is invariant to the first three properties. These two results improved, as

expected, the 75.9% obtained with C-SIFT (see Table 6.7). All those values are lower

than the accuracy obtained from the classification of the HQ-f dataset (81.9%), but

this di�erence can be explained in terms of the lower quality of the images in LQfaces.

Varying illumination during shooting, a not always exactly frontal position of the subject,

the presence of expression in the images are all factors that heavily influence the results.

Although it was not possible to collect human expert ratings for the LQfaces dataset,

since it is composed mainly of well-known personages and hence likely to produce biased

ratings, the accuracies obtained can be compared to those obtained by the HP when

classifying a dataset of frontal images (72.6%).

Tabela 6.7: Cross and within database classification accuracies on LQfaces with
ALL attribute group and di�erent color descriptors.

Descriptor Cross-DB
acc. (%)

LQfaces

acc. (%)
C-SIFT 75.9 79.1
Opponent-SIFT 77.3 80.2
rgb-SIFT 78.5 81.2

A further verification of the generalization capabilities of the proposed approach,

the method discussed here was compared to a previous investigation [16], which is the

only work explicitly dealing with sibling classification. The method was applied to the

VADANA dataset [48] following the same experimental protocol defined in [16]. Since

authors were not able to provide us the exact list of pairs used in their tests, we analyzed

a pair dataset that follows similar restrictions obtaining an accuracy of 78.9%, which can
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be compared with the 75.6% of [16].
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Capítulo 7

Parent-Child Classification

In the previous part of this thesis, the classification of siblings was discussed. This first

investigation consisted in i) assembling two image databases; ii) normalizing all images;

iii) extracting features from the single images; iv) combining the representative vectors

of couples; and, finally v) classifying the datasets and selecting most descriptive featu-

res. This first research suggested the e�ectiveness of the classification scheme associated

with the feature selection process. This methodology indicated which features are more

prominent in the classification of kins and which allowed a broadening of the kinship

recognition investigation by analyzing parent-child pairs. This second part deals with

the automatic discrimination between parent-child pairs from unrelated individuals.

To this end, a database containing photographs of parent-child pairs was used. It was

collected in a previous work in the literature, by Fang et al. [15], which also provided re-

sults from human panels on the same dataset. This was done to provide a reliable ground

for comparison, i. e., if the methodology presented in this work is able to outperform

the results obtained in the previous work [15], then this is a strong suggestion of the

e�ectiveness of the features extracted along with the classification approach.

Although very similar to the discrimination of siblings presented in Part I, the dif-

ferentiation of parent-child pairs is done in a slightly di�erent manner. This is because

the experiments with siblings provided consistent insights regarding the method. Speci-

fically, the siblings experiments were able to tell that some features are not satisfactorily

descriptive to be used in the method. In addition, another textural descriptor was used,

namely Weber Local Descriptor (WLD), which showed highly descriptive capabilities.

Also, previous results have shown that classification techniques other than SVM provide

68
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lower accuracies.

The following sections are organized as follows. Section 7.1 explains the work of Fang

et al. [15] in details and its achievements. Section 7.2 explains the new feature used in

the parent-child classification problem and its characteristics. The results are presented

and discussed in Section 7.3 and conclusions of all work produced in this thesis are drawn

in Section 9.

7.1 Parent-child database

Previously, two databases of facial images were described, namely HQfaces and LQfaces.

Both were used in the automatic classification of siblings pairs as shown in Chapter 6.

A natural second step to deepen the analysis of kins is trying to classify parent-child

pairs. To do that, the approach was finding an already collected database of parent-

child pairs from previous works by other authors in the literature. Starting from an

already prepared database provides two main advantages: (i) sparing time in collecting

and labelling images; and (ii) being able to reliably compare the approach with di�erent

algorithms/ methods.

Therefore, previous works in the literature dealing with databases composed by parent-

child image pairs were surveyed but, the method presented in this work could not (or

should not) be applied to some of them, as explained in the following.

The parent-child database collected by Jiwen Lu et al. [49] is composed by faces

Figura 7.1: Database of parent-child pairs collected over the internet by
Fang et al..
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cropped in a way that precludes the very first step of method presented here, the detection

of facial landmarks (cf. Section 3.3). The one associated to the work of Xia et al. [50]

contains many grayscale images, especially those of young parents, compromising the

approach which relies in color descriptors (cf. Section 4.3.3). Therefore, the database

collected by Fang et al. [15] was selected, since it is befit to our method, providing

a reliable ground for comparison. In this section, their database and achievements in

classifying the parent-child image pairs are discussed.

The database consists of 300 images collected from the Internet (150 parent-child

pairs) and henceforth is referred to as PCfaces (for Parent-Child face pairs). The photo-

graphs were taken from several public celebrities of di�erent age, gender and race in slight

di�erent poses (mostly frontal), illumination conditions and expression (some neutral but

often smiling). Examples of images in this DB are shown in Figure 7.1. The database

is available online1 and contains 50% Caucasians, 40% Asians, 7% African Americans,

and 3% others; 40% of the 150 images are father-son pairs, 22% are father-daughter,

13% are mother-son, and 26% are mother-daughter. They used a simplified Pictorial

Structure Model (PSM) to obtain the positions of four facial landmarks on each image

(right and left eyes, nose and mouth), which served as a base for extracting features from

the images: (i) color, central or most commonly occurring color on landmarks; (ii) facial

parts, sub-windows centered on the keypoints; (iii) facial distances, euclidean distances

between landmarks normalized by global face dimensions; and finaly (iv) gradient histo-

grams. Ultimately, each image is represented by a vector containing 22 di�erent features

associated to di�erent measurements yielding a final vector of dimension much higher

than 22. They used Sequential Forward Selection (SFS) [40] to derive a set composed by

features providing best accuracy. This approach consists in first taking one feature that

solely provides the highest accuracy. Then, another feature is added such that, when

considered in conjunction with the previously selected, increases the accuracy the most.

This process continues till a maximum accuracy is achieved. Since this technique relies

on accuracy performance, it depends on the classification method chosen. The classi-

fication was performed using KNN with k=11 and SVM with a Radial Basis Function

RBF kernel. The separation between training and test sets was implemented using 5-

fold cross-validation. Finally, by applying SFS, a 10 dimensional vector composed by
1Although the authors reported the use of 150 pairs, there are 144 pairs available online, i. e., 288

pairs.
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Figura 7.2: Examples of three parent-child pairs belonging to PCfaces. Images
on the left show originals with annotated landmarks, whereas images on the
right show the normalized faces.

six-features is constructed for representing a couple. Overall classification accuracies of

70.67% and 68.60% were achieved with KNN and SVM, respectively. These results out-

did the classification performed by a panel of human raters, which achieved 67.19% of

correct classification of parent-child pairs.

7.2 Weber Local Descriptor (WLD)

Chen et al. [51] developed an image descriptor coined WLD based on Weber’s law, which

states that the change in a stimulus that will be just noticeable is a constant ratio of the

original stimulus. This relationship can be expressed as

�‡

‡

= k, (7.1)

where �‡ represents the increment threshold (just noticeable di�erence for discrimina-

tion); ‡ represents the initial stimulus intensity and k signifies that the proportion on

the left side of the equation remains constant despite variations in ‡ term.

The Weber fraction given by Eq. (7.1) can be intuitively understood by considering

that a given variation in illumination intensity is more perceivable by the human eye in

a dark room than in a bright environment. Taking this into consideration, the WLD is

based on two components; 1) di�erential excitation; and 2) gradient orientation, whose

general ideas are explained in the following.

Considering an M ◊ N grayscale image I and a 3 ◊ 3 region of pixel levels p, centered
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on pixel pn

p1 p2 p3

p4 pn p5

p6 p7 p8

, (7.2)

the di�erential excitation Án is given by

Án = tan≠1
A

1
pn

8ÿ

i=1
pi ≠ pn

B

(7.3)

and the gradient orientation “n by

“n = tan≠1
A

p4 ≠ p5
p7 ≠ p2

B

, (7.4)

for all n = 1, . . . , MN pixels of image I.

The first component aims at representing the Weber’s law by mean of pixel values, i e.,

by dividing the summation of the di�erences between neighbors and central intensity by

the central pixel value. The numerator in (7.3), containing intensity di�erences, represents

the stimulus variation, whilst the denominator (central pixel value) represents the original

stimulus. The di�erential excitation varies within the interval of the arctangent function,

i. e., Án œ [≠fi/2, fi/2]. Image regions with high frequency variations have corresponding

Án near ≠fi/2 and fi/2, whereas values around zero correspond to low frequency variations.

The second component, or gradient orientation, also lies in range [≠fi/2, fi/2]. Howe-

ver, these values are shifted to range [0, 2fi] by analyzing the signs of the numerator and

denominator of the arctangent’s argument in Eq. (7.4). This is done to avoid the lost

of directionality caused by the arctangent function. In this way, the gradient orientation

represents the directionality of intensity variation.

Two examples of computation of WLD components are shown in Figure 7.3. Both

components are obtained from the original images shown in Figures 7.3a and 7.3d. The

di�erential excitations are shown in Figures 7.3b and 7.3e; the gradient orientations

components are shown in Figures 7.3c and 7.3f respectively, where corresponding ranges

are scaled to [0, 255] for the purpose of visualization.

The di�erential excitation employs the advantages of LBP in computation e�ciency

and smaller support regions, whilst gradient orientation employs the advantages of SIFT

by using the gradient orientation. Since both components are computed for each pixel in
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(a) (b) (c)

(d) (e) (f)

Figura 7.3: Two examples of the computation of the Weber Local Descriptor
components: (a) and (d): original images; (b) and (e): di�erential excitations;
(c) and (f): gradient orientations. Images (b), (c), (e) and (f) are scaled to
[0, 255] for visualization purpose.

an image, WLD is a dense descriptor, di�erently from SIFT, which detects candidate key-

points prior to actually computing descriptors. Moreover, WLD do not depend on image

size, although multi-scale analysis can be performed by varying the size of window (7.2).

Quantization and the WLD vector

The di�erential excitations and gradient orientations computed on each pixel of the M◊N

image I using Equations (7.3) and (7.4), are quantized to generate the final descriptor

vector h. This quantization is illustrated in Figure 7.4, where the possible excitation and

orientation values are quantized into LÁ and L“ levels, respectively.

Gradient orientation values “n that are greater or equal than a lower boundary ⁄j,l and

less than an upper value ⁄j,u are quantized into the level represented by colum j. Similarly,

the di�erential excitation values Án that satisfy ⁄i,l Æ Án < ⁄i,u are quantized into row level

i. Intuitively, each cell hi,j contains the number of pixels that have di�erential excitation

and gradient orientation values inside ranges represented by i and j, respectively. More

formaly, each cell value is given by
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Figura 7.4: Weber Local Descriptor matrix.

hi,j =
MNÿ

n=1
fi,j(Án, “n), (7.5)

where

f =

Y
_]

_[

1, if ⁄i,l Æ Án < ⁄i,u and ⁄j,l Æ “n < ⁄j,u

0, otherwise
. (7.6)

The final feature vector fW LD is then obtained by a concatenation of the hi,j values.

In this work the WLD is computed using the same parameters as the authors, i. e.,

by quantizing the gradient orientations in 8 bins and the di�erential excitations in 120

bins, allowing a feature vector fwld œ Ÿ2880 from each image or image region. An WLD

feature vector example, computed from the original image show in Figure 7.3a can be

seen in Figure 7.5.

Experimental results presented in [51] have shown that WLD outperforms LBP and

Gabor descriptors based on its performance on classifying di�erent benchmarks.
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Figura 7.5: The final Weber descriptor vector h œ Ÿ2880 (or histogram) com-
puted from the image shown in Figure 7.3a.



CAPÍTULO 7. PARENT-CHILD CLASSIFICATION 75

7.3 Results of parent-child classification

As one step further in the development of a multi-class discrimination algorithm, pairs

of parent-child individuals were analyzed. Recalling from Chapter 7.1, Fang et al. [15]

collected from the Internet various images of parents along with their corresponding

children to perform kinship analysis. They obtained a classification accuracy of 70.67%

in the classification of parent-child pairs, which outdid the 67.19% performance of human

raters. In order to provide further insight in the e�ectiveness of the algorithm discussed

in this thesis, it was also applied to the parent-child dataset collected in [15].

Here, as before, the accuracies based on the classification of each separate attribute

was first analyzed. Attributes providing low accuracy were discarded. Then, they were

evaluated by characterizing each facial image with three di�erent groups of attributes:

GEOMETRIC, grouping the geometric attributes, TEXTURE, combining textural infor-

mation, and ALL, concatenating all the described attributes. The results are summarized

in Table 7.1 and organized by attribute, or attribute group, and by classification algo-

rithm (SVM vs. Random Decision Forest (RDF)). Again, to improve the understanding

of the accuracies, the same values are illustrated in Figure 7.6. Other classifiers like KNN

where not tested, since they did not perform well in the siblings classification problem, as

can be seen in Figure 6.12. Results were assessed using stratified five-fold cross-validation

(CV), and, hence, the average classification rates of each classifier over the di�erent CV

rounds are reported.

The following remarks can be drawn:

• concerning single attributes, textural features have an higher discriminative power

than geometric ones, with WLD obtaining the best performances (78.0% with

Tabela 7.1: Accuracy results. For each attribute and each classification algo-
rithm, we show the percentage of correct classifications and, in brackets, the
optimal number of variables selected by the FS process.

SVM (%) NFS (%) RDF NFS
SEGS 68.2 36 60.1 40
RATIOS 73.1 26 59.3 175
ANGLES 68.9 60 57.2 100
C-SIFT 74.1 28 66.3 62
WLD 78.0 56 70.6 250
GEOMETRIC 74.3 13 65.4 175
TEXTURE 80.1 44 76.1 150
ALL 81.8 28 77.5 150
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Figura 7.6: Classification accuracies of individual and combined features for
parent-child pairs.

SVM);

• the more heterogeneous the information, the better the accuracies. As a matter

of facts, grouped attributes performed consistently better than their single compo-

nents, and the best accuracies were obtained for both algorithms considering all

attributes together achieving 81.8% and 77.5% for, respectively, SVM and RDF;

• as for the classification techniques, SVM, in combination with a proper selection

of the most relevant features, provides, in this specific problem, consistently better

performances than RDF.

One expected result, not shown in Table 7.1, is that Feature Selection (FS) provides,

in both cases a significant classification improvement (between 6% and 14%, for SVM,

and 1% and 12% for RDF). As for the selection process, it is also interesting to analyze

the distribution of features surviving the FS pruning for composite attributes. Figure 7.7

illustrates, for all attribute groups, the percentages of features types composing the op-

timal feature vector for both SVM (Figure 7.7a) and RDF (Figure 7.7b). In general;

- features from all attributes are chosen to compose the final vector, exception made for

ALL group with SVM where ANGLES are discarded (which could be expected since

they convey an information similar to SEGS);

- RATIOS is the most relevant geometric attributes, suggesting its good descriptive ca-

pability;



CAPÍTULO 7. PARENT-CHILD CLASSIFICATION 77

- WLD features are found more relevant than CLID ones, but the latters also contribute

reasonably when geometric features are added;

- texture features are preferably selected to compose the final dataset, especially with

RDF.

Finally, these accuracies can be compared to those obtained by Fang et al. [15], who

analyzed the same dataset with a di�erent technique. The performance of their approach

(70.69%) and that of a panel of human raters on the same data (67.19%) are improved by

that obtained in our work with several single attributes, and outperformed by our best

result (81.8%), achieved with the combination of all attributes.

In conclusion, the experimental results show that the combination of geometric and

textural features, together with a proper selection of the feature variables, is indeed a

valuable solution to the automatic Kinship Verification (KV) process, obtaining high

classification accuracies and outperforming previous approaches on the same data.
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(a) SVM: feature selection.
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(b) RDF: feature selection.

Figura 7.7: Feature selection applied to (a) SVM and (b) RDF: distribution
of feature variables per type for di�erent attribute groups.



Capítulo 8

Siblings Classification Revisited

As stated in the Introduction (cf. Chapter 1), this work was organized into two parts,

the first dealing with siblings and the second with parent-child pairs. The second part,

assessing the problem of parent-child classification, considered the knowledge acquired

in the siblings problem. Specifically, features providing low accuracies and low capacity

to survive the Feature Selection (FS) pruning in the siblings analysis were discarded in

the parent-child classification (NPOS, PCA, RIC-LBP and RIGF – cf. Chapter 7). Also,

another textural feature was added to the parent-child problem, namely, Weber Local

Descriptor (WLD), which provided good results.

Taking this into consideration, the analysis of siblings was revisited considering also

the WLD feature, to analyze if the accuracies achieved in Part I could be improved.

Moreover, the same analysis of the features surviving the FS pruning was performed in

order to provide more insight on the features that are relevant for the classification of

siblings.

Therefore, in this chapter are presented the results of the same methodology presented

previously is revisited, i. e., features are extracted and used to build the Pair Datasets

(PDSs), which are then fed into the two-step Feature Selection (FS) process associated

with the Support Vector Machines (SVM) classifier, as explained in Chapter 5.

8.1 New set of features

The knowledge acquired during the development of the siblings and parent-child analysis

led to a selection of the attributes that, based on the accuracies results, are likely relevant

78
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to Kinship Verification (KV).

Based on the results presented on past chapters, the attributes enumerated in Ta-

ble 8.1 were considered. Also, the dimensions of each attributes are presented. The

specification number of each attribute was maintained to avoid misunderstanding with

the attributes used in the siblings problem, enumerated on Table 4.2. Notice that there

are only geometric and textural feature groups.

8.2 Classification results

Following the same procedure presented before, all attributes were first tested individu-

ally, and then they were combined, composing a set of the “best-of-the-best” features, as

explained in Section 5.2. Classification accuracies of individual attributes are presented

on Table 8.2, where higher accuracies are highlighted with brighter background colors.

Same as before, the percentage of features selected are shown for each Pair Dataset (PDS).

The combined attributes were also tested in three di�erent groups; (1) GEOMETRIC,

concatenating all geometric attributes (SEGS, ANGLES and DTR); (2) TEXTURES,

combining LID and WLD, and finally; (3) ALL, concatenating all features together.

These combination results are also shown in Table 8.2. As before, one might notice that,

in general, the more poses analyzed, the higher the performance. And, the more hetero-

geneous the data, i. e., the combination of features of di�erent nature yields, in general,

better results. This can be best observed in Figure 8.1, which shows the classification

accuracies for individual and combined attributes for Pair Datasets (PDSs) HQ-f, HQ-fp

and HQ-fps. It is important to notice the following:

Tabela 8.1: Attributes dimensions.

Attribute size (size of a feature
◊ number of features)

Number of feature variables
related to the attribute for an

individual
Attribute Frontal (f) and

frontal smiling (fs)
images

Profile (p) and
profile smiling (ps)

images

HQ-f HQ-fp HQ-fps

2. SEGS 1◊184 1◊25 184 209 418
3. ANGLES 1◊342 1◊42 342 384 768
4. DTR 1◊862 1◊92 862 954 1908
8. LID 384◊76 384◊12 76 88 176
9. WLD 2880◊76 2880◊12 76 88 176
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Tabela 8.2: Classification results, showing for each PDS and for each attribute
or attribute group, the classification accuracy (Acc) and the percentage of
features selected by the FS algorithm (NFS).

Attribute
HQ-f HQ-fp HQ-fps

Acc.(%) NFS (%) Acc.(%) NFS (%) Acc.(%) NFS (%)

2 SEGS 74.4 ± 4.7 62 77.2 ± 5.3 34 83.9 ± 4.5 48

3 ANGLES 71.9 ± 5.4 12 76 ± 7.1 28 85.7 ± 2.8 34

4 DTR 76.3 ± 9.6 18 79.7 ± 5.1 58 86.6 ± 7.2 24

8 LID 80.6 ± 6.7 20 76.6 ± 4.8 60 80.4 ± 2.3 34

9 WLD 75.0 ± 4.5 34 75.3 ± 3.5 34 79.5 ± 6.6 18

GEOMETRIC 75.9 ± 6.4 33 82.7 ± 4.7 25 88.4 ± 2.5 57

TEXTURES 83.1 ± 3.8 89 83.5 ± 2.7 36 85.7 ± 4.3 42

ALL 83.1 ± 10.5 25 84.2 ± 4.8 16 92.0 ± 2.7 44

• The geometric features combined provided the same results as before, indicating

that, indeed, the NPOS feature can be discarded with no considerable loss in per-

formance.

• Textures provided consistently better results in comparison with the previous set

of attributes analyzed in Table 6.2, showing that;

– RIC-LBP and RIGF are likely to deprecate the performance.

– The Weber Local Descriptor (WLD) performs well individually, contributing

to a high performance when combined with attributes of di�erent nature.

• The final classifier achieved 92 ± 2.7% accuracy of correct classification of siblings

using ALL attribute group on HQ-fps Pair Dataset (PDS).

8.3 Selection of best features

Once again, an analysis of the features surviving the FS pruning might allow an insight

of the features that are more likely to provide higher discriminative capabilities to the

siblings identification problem. This analysis is performed by observing which are the

features surviving the FS pruning when the algorithm is applied to the ALL attribute
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group onto the HQ-fps Pair Dataset (PDS). It is important to recall that the ALL at-

tribute group contains all features specified in Table 8.1, and the HQ-fps PDS contains

images in frontal, profile, frontal smilling and profile smilling poses.

Figure 8.2 shows the proportions of features selected when the two-step Feature Se-

lection (FS) process is applied to the ALL attribute group computed from the HQ-fps

dataset. The following behaviors can be noticed:

• The features more resistant to the FS pruning are WLD, LID and DTR.

• There is a reasonably balanced preference for geometric and textural features for all

PDSs. But, for HQ-fps, the geometric features dominate slightly composing 63% of

the final dataset.

• There is a balanced choice between WLD and LID for textural features. For geo-

metric features, on the other hand, there seems to be a preference for DTR, sug-

gesting the descriptive capabilities of Delaunay Triangulation ratios between facial

segments.

A comparison between the previous classification accuracies of siblings presented in

Section 6.5 and the current classification of siblings can be appreciated in Figure 8.3.

8.4 Correct and incorrect classifications

In the investigation of facial analysis, it is pertinent to observe a few images correctly

and incorrectly classified by the software. Indeed, by obtaining an insight about the

correctly and missclassified samples, one might subjectively analyze if the algorithm is

able to e�ectively represent facial similarity e�ectively or not.
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Figura 8.1: Classification accuracies for individual and grouped attributes for
PDSs HQ-f, HQ-fp, and HQ-fps at left, center and right, respectively.
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Figura 8.2: Proportions of features selected from ALL attribute group com-
puted from HQ-fps.

To this purpose, consider Figure 8.4, which shows 5 samples from HQ-f. The first

three samples are positive (siblings) and the last two are negative (non-siblings). In

fact, observe that the two siblings in the first sample are identical twins. The SVM

score columns presents the scores s œ [0, 1] of the automatic classifier. The sample is

classified as positive (siblings) if s Ø 0.5 and negative otherwise. Although the SVM

scores are typically within range [≠1, 1] with the decision threshold equals zero, these

scores where translated to facilitate comparison with the Human Panel (HP) scores.

These are analogous to the SVM scores, i. e., the decision threshold is 0.5. The closest

both scores are to 0 and 1, the more confident is the classification.

The following observations can be drawn:
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Figura 8.3: Comparison between previous and current accuracies in siblings
classification.
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SVM score

0.83 0.69

HP scoreAre siblings?

1

0.17 0.521

0.95 0.481

0.26 0.170

0.74 0.010

Figura 8.4: Examples of correctly and erroneously classified samples.

1. Sample number 1 (positive). Both SVM and humans classified correctly, but SVM

provided much higher confidence. This might be and indication that the software

can perform well if applied to traditional identification.

2. Sample number 2 (positive). Only SVM classified this siblings’ pair correctly, with

high confidence. Notice the similarities in the faces of the individuals. Their eyes,

nose, mouth and chin present similar shapes. Their eyes have the same color.

3. Sample number 3 (positive). SVM provided very poor (incorrect) classification in
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this case. Humans correctly classified it with poor confidence.

4. Sample number 4 (negative). Both classified the sample correctly with reasonable

confidence.

5. Sample number 5 (negative). SVM provided incorrect classification whereas humans

correctly classified the sample with high confidence.

No negative pair was correctly classified by SVM and incorrectly classified by humans.

This occurred because members participating in the HP experiments preferred to say that

a sample was negative if they had “any” doubt about the brotherhood of the sample. This

can be observed in the low false positive ratios presented in Table 6.1.

8.4.1 Processing times

It is relevant to briefly discuss the processing times involved in each step of the algorithm

discussed in this work. They are enumerated in the following.

1. Detection of facial landmarks and image normalization. The time necessary

to detect the 76 and 12 points located onto frontal and profile images is of the order

of a few seconds, depending on the image size and the e�ectiveness of the Viola-

Jones face detection [52]. Nevertheless, this processing time can be considered

negligible when compared to the time of the features selection processing. The

image normalization also has a negligible processing time when the whole algorithm

is considered.

2. Extraction of features. From all features discussed previously, the more expen-

sive to compute are the SIFT-based color descriptors, which took approximately

6-8 seconds to compute. The remaining textural features take a few seconds to

process. The WLD for instance, needs 1.8 ± 0.5 seconds to compute.

3. Classifier training. This is, by far, the most expensive step in the whole algo-

rithm:

• The first feature selection step, mRMR, however, is fast since the samples are

categorized using the mean ± deviation scheme. Besides, its implementation

is available in Matlab R• executable file (.mex), which performs better than
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script files. It also needs only a few seconds to rank the 50 features with

least redundancy between each other and most correlated to the classification

variable.

• The second FS step, Sequential Forward Selection (SFS), however, is the most

expensive one due to its iterative nature. Depending on the size of the feature

set, it can last from 5 to 20 minutes long. During the development of this

thesis, simulations would eventually last for days, due to iterative evaluation

of di�erent parameters, such as, for instance, the number of features ranked

by mRMR.

4. Classifier testing. Considering that the SVM classifier is already trained and the

final set of features was selected in the training phase, the testing phase is quickly

executed. It consists in normalizing the two test images, extracting the features

(which is performed in ¥ 10 seconds), mapping those features to a higher dimen-

sional space using the optimized kernel and finding its distance to the separating

hyperplane. This classification is quickly performed (few seconds) by the libSVM

package [46], which is also available as a Matlab executable file (.mex).
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Conclusion and Future Work

This thesis has presented the results of a new research aimed at recognizing siblings’

pairs from 2D color images with pattern analysis and image processing techniques. To

this purpose, a database of high quality images of pairs of siblings shot in constrained

poses and in a controlled environment was constructed, which will be made available

to the community for further investigation on the subject. The ability of human obser-

vers to discriminate pairs of siblings and not siblings from images of this database was

experimentally determined as well. Then, di�erent facial attributes were extracted from

available images, which can be divided into three main groups: (i) geometric information,

related to the shape of the face or of its relevant features; (ii) holistic data, combining ge-

ometric and textural information; and (iii) local image descriptors, describing the image

characteristics in the neighborhood of some salient facial points. Finally, di�erent attri-

butes and their groupings were used to build di�erent classifiers, based on the integration

of SVMs with a two-step Feature Selection process.

Results show that the combination of features of di�erent natures is e�ective in achi-

eving higher accuracies than those obtained by a panel of human raters, which were used

as a basis for comparison in order to assess the quality the method. The generalization

capabilities of the proposed approach are shown by the satisfactory accuracy of the clas-

sification of a dataset of heterogeneous images collected from the Internet. All relevant

results presented in this thesis were published in [5, 6, 7]. The first observation that

eigenfaces could be e�ective in discriminating siblings was presented in [5]. The rele-

vant results obtained by analyzing all features described in Part I were presented in [6],

whereas the results in discriminating parent-child pairs (cf. Part II) were shown in [7].

86
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9.1 Future work

Hopefully this research and the collected database of high quality facial images will cons-

titute a basis for future studies in the field of automatic kinship recognition. Several

further steps are possible:

• A larger siblings database would be important for verifying the algorithms proposed

and strengthening the results. For instance, it will be relevant to collect siblings of

di�erent ethnicities. As stated in Chapter 3, the database collected contains only

images of Caucasians, which is unbalanced to deal with real-world databases, since

individuals present a large diversity in skin/hair/eyes colors and geometry of facial

parts, both locally and globally.

• It will be interesting to investigate the relevance to kin identification of very strong

similarities limited to restricted face areas (like eyes, nose, mouth), which is consi-

dered a kinship clue in everyday life. This is a sensitive approach, since kins can

have strong or weak similarities of specific facial parts. For instance, the eyes of

a daughter can be very similar to her mother’s eyes but, on the other hand, very

dissimilar to her father’s, which complicates the analysis.

• More knowledge can be integrated to the final classifier to deal with the more

sensitive cases such as half-siblings and identical twins, to improve its robustness.

• The problem of traditional identification can be incorporated as well, to yield a

classifier able to perform both identification and kinship assessment. This can be

a very sensitive approach, considering the problem of identical twins stated in the

previous item.

• A natural step forward in this research will be addressing the multi-class problem

derived by others degrees of kinship, e. g., parent-child, parent-grandchild, etc

(smaller kinship coe�cients, as defined in Chapter 2). For this problem, another

interesting point to be considered is how factors as gender and age influence a

kinship predictor, and possible approaches to alleviate such influences.

• In addition to kinship classification, a score can be attributed to a pair of indivi-

duals, based on the likelihood of them being related. This related to a regression
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of the characteristics of the couple from a kinship perspective, which has not been

addressed in the literature yet.

• Once a robust and comprehensive classifier is trained to deal with di�erent kin

relationships, in addition to classifying whether two people are related or not, it

can determine the exact degree of kinship of the pair of individuals. This will consist

in labeling the sample as belonging to the class corresponding to similar descriptive

vectors, for instance.
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RDF Random Decision Forest. 75, 76

RIC-LBP Rotation Invariant Co-occurrence among Adjacent LBPs. 26, 29, 80

RIGF Rotation Invariant Gabor Feature. 30, 80

SDK Software Development Kit. 55

SFS Sequential Forward Selection. x, 44, 61, 62, 70, 85

SIFT Scale-Invariant Feature Transform. 30, 49, 50, 72, 73, 84

SMO Sequential Minimal Optimization. 41

SoA State of the Art. 3

SURF Speeded Up Robust Features. 49, 50

SVM Support Vector Machines. 7, 33, 41, 43, 45, 47, 57, 62, 63, 68, 70, 71, 75, 76, 78,

82–85

TSL Transfer Subspace Learning. 8

WLD Weber Local Descriptor. 68, 71–75, 78, 80, 84
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