UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

ÂNDRIA GABRIEL DE SOUZA

AUTO-REGULADOR MAGNÉTICO DE TENSÃO A REATOR SATURADO: DIMENSIONAMENTO E PROJETO

Recife, Fevereiro de 2012.

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

AUTO-REGULADOR MAGNÉTICO DE TENSÃO A REATOR SATURADO: DIMENSIONAMENTO E PROJETO

por

ÂNDRIA GABRIEL DE SOUZA

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Pernambuco como parte dos requisitos para a obtenção do grau de Mestre em Engenharia Elétrica.

ORIENTADOR: MANOEL AFONSO DE CARVALHO JÚNIOR, Ph.D.

Recife, Fevereiro de 2012.

© Ândria Gabriel de Souza, 2012

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

S729a	Souza, Ândria Gabriel de. Auto-regulador magnético de tensão a dimensionamento e projeto / Ândria Gabriel de Sou 2012. xxiv, 202 folhas, il., gráfs., tabs.	a reator saturado: za Recife: O Autor,
	Orientador: Prof. Dr. Manoel Afonso de Carvalho Dissertação (Mestrado) – Universidade Federal o Programa de Pós-Graduação em Engenharia Elétrica, Inclui Referências Bibliográficas, Apêndices e An	9 Júnior. de Pernambuco. CTG. 2012. nexos.
	 Engenharia Elétrica. 2. Regulação de Tensão. 2 Reator Naturalmente Saturado. 5. Capacitores. 6. Resistência de Amortecimento. 8. Curtos-Circuitos. Manoel Afonso de. (Orientador). II. Título. 	 Compensação Série. Reatores Lineares. 7. I. Carvalho Júnior,
		UFPE
	621.3 CDD (22. ed.)	BCTG/2012-086

Universidade Federal de Pernambuco Pós-Graduação em Engenharia Elétrica

PARECER DA COMISSÃO EXAMINADORA DE DEFESA DE DISSERTAÇÃO DO MESTRADO ACADÊMICO DE

ÂNDRIA GABRIEL DE SOUZA

TÍTULO

"AUTO-REGULADOR MAGNÉTICO DE TENSÃO A REATOR SATURADO: DIMENSIONAMENTO E PROJETO"

A comissão examinadora composta pelos professores: MANOEL AFONSO DE CARVALHO JÚNIOR, DEE/UFPE, RONALDO RIBEIRO BARBOSA DE AQUINO, DEE/UFPE e BENEMAR ALENCAR DE SOUZA, DEE/UFCG sob a presidência do primeiro, consideram a candidata ÂNDRIA GABRIEL DE SOUZA APROVADA.

Recife, 16 de fevereiro de 2012.

CÍLIO)OSÉ LINS PIMENTEL Coordenador do PPGEE

cardeSouza Pont

ENEMAR ALENCAR DE SOUZA Membro Titular Externo

MANOEL AFONSO DE CARVALHO JÚNIOR Orientador e Membro Titular Externo

RONALDO RIBEIRO BARBOSA DE AQUINO Membro Titular Interno

Dedico este trabalho ao meu exemplo de vida, Severina que me deu não somente a vida, mas principalmente a minha educação e condições de estudo. Sua paciência infinita e sua crença absoluta na capacidade de realização a mim atribuída foram os elementos propulsores desta dissertação.

AGRADECIMENTOS

Ao meu orientador, Prof. Manoel Afonso de Carvalho Júnior, pela oportunidade oferecida, orientação e confiança. Com ele tive a oportunidade de enriquecer meu conhecimento, com suas argumentações científicas, seu apoio, paciência e principalmente pelo bom convívio e horas de descontração nestes anos de trabalho;

À minha família, Thiago, Janaina, Thaynara, Thayna, Gilberto, Zélia, Joaquim, Senira e às saudosas lembranças de Celeste, Josefa e Norma Lúcia tão únicos para mim que viveram esse sonho comigo e partilharam de cada momento ao longo de todos os anos da minha vida;

À Companhia Energética de Pernambuco (CELPE), por proporcionar a infraestrutura laboratorial e material no âmbito do programa de P&D ANEEL, ajuda essencial no desenvolvimento deste trabalho;

À amiga Janise pelo incentivo, força, amizade que se construiu para além dos espaços da universidade, pelos conselhos e puxões de orelhas exercendo muita vezes não só um papel de amiga mais de uma irmã mais velha, pelo carinho que partilhamos durante nosso caminhar acadêmico;

À Prof. Milde Maria e à Valdete Oliveira pela orientação, apoio, compreensão, estímulo acadêmico, convívio e pela amizade;

Aos Professores Ronaldo Aquino e Luiz Antônio Magnata pelos conselhos, apoio e contribuição importantes na minha vida acadêmica;

Aos amigos Fernando Edier e Luanna Nery pelas contribuições importantes para a realização deste trabalho, pelo apoio e confiança;

A todos os colegas que de uma forma ou de outra contribuíram para a realização deste trabalho.

"As pessoas grandes adoram os números. Quando a gente lhes fala de um novo amigo, elas jamais se informam do essencial. Não perguntam nunca: "Qual é o som da sua voz? Quais os brinquedos que prefere? Será que ele coleciona borboletas? ...Só se vê bem com o coração. O essencial é invisível aos olhos."

(O pequeno Príncipe)

Resumo da Dissertação apresentada à UFPE como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Elétrica.

AUTO-REGULADOR MAGNÉTICO DE TENSÃO A REATOR SATURADO: DIMENSIONAMENTO E PROJETO

Ândria Gabriel De Souza

Fevereiro/2012

Orientador: Manoel Afonso de Carvalho Júnior, Ph.D. Área de Concentração: Processamento de Energia. Palavras-chave: Regulação de Tensão, Compensação Série, Reator Naturalmente Saturado, Capacitores, Reatores Lineares, Resistência de Amortecimento, Curtos-Circuitos.

Número de Páginas: xxiv+202.

RESUMO: O controle da tensão em redes elétricas radiais é um dos maiores desafios das empresas de distribuição de energia no cumprimento da missão institucional de que está investida e o uso de reguladores de tensão tem sido uma prática habitual. Esta dissertação propõe uma alternativa mais econômica e eficaz não somente para o controle da tensão em estado permanente, mas também no transcurso de eventos transitórios como a limitação da corrente de curto-circuito e do controle do afundamento e elevação da tensão de consumidores conectados a montante durante um defeito a jusante do equipamento. O Auto-Regulador Magnético de Tensão a Reator Saturado (ARMTRS) para redes primária de distribuição é um dispositivo de baixo custo, atuação rápida e exibe um desempenho compatível com a finalidade pretendida. Neste sentido, o presente trabalho descreve, não só, o desenvolvimento completo do dimensionamento do ARMTRS e de todos os seus componentes, como também, os resultados dos estudos de aplicação de protótipos em tamanho reduzidos do ARMTRS em alimentadores reais da rede CELPE obtidos em simulação e experimentações laboratoriais. O desenvolvimento destes protótipos é fruto de um projeto de pesquisa e desenvolvimento firmado entre a Companhia Energética de Pernambuco, CELPE, com a UFPE.

Abstract of Dissertation presented to UFPE as a partial fulfillment of the requirements for the degree of Master in Electrical Engineering.

MAGNETIC AUTO-REGULATOR OF VOLTAGE BASE ON SATURATED REACTOR: MEASEUREMENT AND DESIGN

Ândria Gabriel De Souza

February /2012

Supervisor(s): Manoel Afonso de Carvalho Júnior, Ph.D.

Concentration Area: Energy Processing.

Keywords: Voltage Regulation, Series Compensation, Naturally Saturated Reactor, Capacitors, Linear Reactors, Damping Resistance, Short-Circuits.

Number of Pages: xxiv+202.

ABSTRACT: Voltage control in electrical power networks is one of the most significant challenges for electric power distribution utilities in the fulfillment of institutional mission in which they are involved and use of voltage regulators has been a usual practice. This dissertation proposes a more effective and economical alternative not only to control steady-state voltage, but also the voltage in the course of transient events, such as limiting short-circuit currents and reducing the number and severity of voltage sags and swell of loads connected upstream of the equipment during the occurrence of a short-circuit downstream of it. The Magnetic Auto-Regulator of Voltage based on Saturated Reactor (ARMTRS) for primary distribution networks is a device of low cost, quick action and shows a compatible performance with the intended purpose. Therefore, this work describes not only the complete development of measuring the ARMTRS and all its components, as well as, shows the results of studies applying a reduced size prototype of the ARMTRS in a real electrical network of CELPE (the electrical power utility of Pernambuco) from simulation and laboratory studies. This prototype is result of a research and development project signed between CELPE (Companhia Energética de Pernambuco) and UFPE.

Sumário

LISTA DE FIGURAS	XII
LISTA DE TABELAS	XX
LISTA DE ABREVIATURAS	XXII
LISTA DE SÍMBOLOS	XXIII
CAPITULO 1	
INTRODUCÃO	1
	I
1.1 - CONSIDERAÇÕES INICIAS	1
1.2 - OBJETIVOS PRETENDIDOS	
1.5 – APRESENTAÇÃO DO TRABALHO	
CAPITULO 2	
APLICAÇAO DO ARMTRS EM REDES TRIFÁSICAS DE DISTRIBUI	IÇAO EM
13,8 KV	
2.1 – Análise do sistema elétrico	5
2.1.1 – Alimentador - SLM-01C3	
2.1.2 - Alimentador - ITA-03	
2.2 – ESPECIFICAÇÃO DO PONTO PARA A INSTALAÇÃO DO ARMTRS	
2.2.1 – Alimentador - SLM-UICS	11 1 <i>1</i>
2.2.2 - Aumentaaoi - 11A-03	14 17
2.5 – ANALISE DO DESEMPENHO DO ARMITIS NO SISTEMA CELPE 2 3 1 – Análise em regime permanente	17
2.3.2 – Análise em regime transitório	
2.3.2.1 – Curto-circuito monofásico	
2.3.2.2 – Curto-circuito bifásico com terra	
2.3.2.3 – Curto-circuito trifásico	
2.3.3 – Controle do afundamento de tensão	
2.3.4 – Análise do ARMTRS após a remoção do defeito	
2.3.5 – Análise do RLS durante um defeito	
CAPITULO 3	
DIMENSIONAMENTO DO ARMTRS -13,8KV - CABEÇA DE SÉRIE	57
3.1 – Considerações preliminares	
3.2 – ROTINA DE CÁLCULO	
3.3 – Curva de magnetização	63
3.4 – DIMENSIONAMENTO DO REATOR NATURALMENTE SATURADO – RNS	64
3.4.1 – Dimensionamento do condutor para o Reator Naturalmente Satu	rado – RNS
3.3– DIMENSIONAMENTO DO KEATOR LINEAR SERIE – KLS – ESTRUTURA	71
FEKKUMAGNETICA	
ferromagnética	<i>L</i> siruiuru
J	

3.6– DIMENSIONAMENTO DO RETORNO	77
3.7– DIMENSIONAMENTO DO REATOR LINEAR SÉRIE – RLS – NÚCLEO DE AR - LI	MITADOR
DE CORRENTE DE CURTO	78
3.7.1 – Cálculos das Bobinas Curtas	
3.7.2 – Cálculos das Bobinas Longas	
3.8– DESENHOS DE PROJETOS DOS COMPONENTES DO PROTÓTIPO DO ARMTRS 13	5,8KV –
CABEÇA DE SÉRIE	
3.8.1 – Dimensões Físicas – Alimentador SLM-01C3	83
3.8.2 – Dimensões Físicas – Alimentador ITA-03	86
3.8.3 – Arguitetura dos enrolamentos - Alimentador - SLM-01C3	89
3.8.4 – Arguitetura dos enrolamentos - Alimentador - ITA-03	
3.8.5 – Dimensões Físicas – Bobina de Núcleo de Ar	
3.8.5.1 – Bobina Curta	
3.8.5.2 – Bobina Longa	
	94
$\mathbf{D}_{\mathbf{A}}$ D $\mathbf{D}_{\mathbf{A}$	
DADOS EXPERIMENTAIS E DE SIMULAÇÃO DO ARMIRS - 380V- PROTÓTIPO DE BANCADA	94
4.1 - CONSIDERAÇÕES PRELIMINARES.	
4.2 – DIMENSIONAMENTO E MONTAGEM DOS PROTOTIPOS DE BANCADA 380 V	
4.3 – MODELAGEM DO SISTEMA	
4.3.1 – Modelagem do RNS	
4.3.1.1 – Dualidade da Estrutura Assimétrica e Simétrica	
$4.3.2 - Curva característica \lambda x i do RNS$	
4.33 – Curva característica V x i do RLS	100
4.4 – RESULTADOS EXPERIMENTAIS	100
4.5 - RESULTADOS DE SIMULAÇÃO	103
4.5.1 – Resultados de Simulação sem dualidade eletromagnética	103
4.5.2 – Resultados de Simulação com dualidade eletromagnética	110
4.6 – ANÁLISE DO ARMTRS APÓS A REMOÇÃO DO DEFEITO	116
4.7 – Auto-ajuste da tensão do ARMTRS	119
4.8 – Resultados obtidos através do programa FEMM	120
4.8.1 – Regime Permanente	120
4.8.2 –Durante um defeito	124
CAPITULO 5	126
CONSIDERAÇÕES FINAIS	126
5.1 – Conclusão	
5 2 – SUGESTÕES PARA TRABALHOS EUTUROS	128
5.3 – PUBLICACÕES	128
APÊNDICE	129
$(1 O_{\text{O}}) = (2 O_{\text{O}}) = (2 $	100
0.1 - CONFIGURAÇAU DU SISTEMA TESTE - SLWI-UIUS	129
0.2 - KOTEIRO EM ATP DO SISTEMA SLIVI-UTC3 SEM AKMTKS	
0.5 - CONFIGURAÇAO DO SISTEMA TESTE - 11 A-03	
0.4 - KOTEIRO EM A I P DO SISTEMA I I A-U3 SEM AKMI KS	133
0.0 - KOTEIRO EM A TP DO SISTEMA SLM-UIC3 COM AKMIKS	136
$0.0 - \mathbf{K}$ OTEIKU EM ATP DU SISTEMA ITA-U3 COM AKMTKS	141

6.7 – Análise do sistema SLM-01C3 em regime permanente senoidal de oper	RAÇÃO
AO LONGO DOS ANOS	147
6.8 – Análise do sistema ITA-03 em regime permanente senoidal de operaçã	ĂO AO
LONGO DOS ANOS	149
6.9 – Análise das diferentes arquiteturas – SLM-01C3	150
6.10 – Roteiro em ATP da Estrutura Assimétrica com elemento 98 e sem du	JAL
ELETROMAGNÉTICO	152
6.11 – Roteiro em ATP da Estrutura Simétrica com elemento 98 e sem duai	
ELETROMAGNÉTICO	153
6.12 – ROTEIRO EM ATP DA ESTRUTURA ASSIMÉTRICA COM ELEMENTO 96 E SEM DU	JAL
ELETROMAGNÉTICO	154
6.13 – ROTEIRO EM ATP DA ESTRUTURA SIMÉTRICA COM ELEMENTO 96 E SEM DUAI	
ELETROMAGNÉTICO	156
6.14 – ROTEIRO EM ATP DA ESTRUTURA ASSIMÉTRICA COM ELEMENTO 98 E COM DE	UAL
ELETROMAGNÉTICO	157
6.15 – ROTEIRO EM ATP DA ESTRUTURA SIMÉTRICA COM ELEMENTO 98 E COM DUA	L
ELETROMAGNÉTICO	162
6.16 – ROTEIRO EM ATP DA ESTRUTURA ASSIMÉTRICA COM ELEMENTO 96 E COM DE	UAL
ELETROMAGNÉTICO	166
6.17 – ROTEIRO EM ATP DA ESTRUTURA SIMÉTRICA COM ELEMENTO 96 E COM DUA	L
ELETROMAGNÉTICO	174
NEXOS	181
7.1 – PARÂMETROS ELÉTRICOS DE CÉLULAS CAPACITIVAS	181
7.2 – Desenho de projeto da Estrutura Assimétrica do protótipo de banca	DA —
ARMTRS – 380V	181
7.3 – DESENHO DE PROJETO DA ESTRUTURA SIMÉTRICA DO PROTÓTIPO DE BANCADA	. —
ARMTRS – 380V	183
7.4 – Curva de Magnetização e perdas do protótipo de bancada – 380V	
FORNECIDA PELO FABRICANTE	184
7.5 – RESULTADOS DE ENSAIO PARA OBTENÇÃO DAS CARACTERÍSTICAS DA IMPEDÂN	CIA
EQUIVALENTE DO SISTEMA	185
7.6 – RESULTADOS DE ENSAIO PARA OBTENÇÃO DA RESISTÊNCIA QUE REPRESENTA A	
CARGA DO SISTEMA	186
7.7 – RESULTADOS DE ENSAIO PARA OBTENÇÃO DA RESISTÊNCIA QUE REPRESENTA C)
DEFEITO	187
7.8 – RESULTADOS DE ENSAIO PARA OBTENÇÃO DA REATÂNCIA CAPACITIVA DO BCS	5 188
7.9 – RESULTADOS DE ENSAIO PARA OBTENÇÃO DAS CARACTERÍSTICAS DO REATOR	
NATURALMENTE SATURADO (RNS)	189
7.10 - RESULTADOS DE ENSAIO PARA OBTENÇÃO DAS CARACTERÍSTICAS DO REATOR	٤
LINEAR SÉRIE (RLS)	193
7.11 - Curva característica A X I usada na modelagem do elemento nonlin	EAR
CURRENT-DEPENDENT INDUCTOR (TYPE 96)	196
7.12 – CURVA CARACTERÍSTICA A XI USADA NA MODELAGEM DOS PROTÓTIPOS DE	
BANCADA COM DUALIDADE ELETROMAGNÉTICA	197
7.13 – RESULTADOS DE ENSAIO PARA AUTO-REGULAÇÃO DA CARGA CONECTADA A	
JUSANTE DO ARMTRS	199
FFFRÊNCIAS BIBI IOCRÁFICAS	200
LT LALIVLAG DIDLIVGRAFICAS	400

<u>Lista de Figuras</u>

Figura 1.1 – Arquitetura do ARMTRS.	2
Figura 2.1 – Rede trifásica de distribuição em 13,8kV – SLM - 01C3	5
Figura 2.2 – Representação Eletrogeográfica – SLM-01C3.	6
Figura 2.3 – Perfil das tensões nas barras por unidade (pu) – SLM -01C3.	7
Figura 2.4 – Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 11 a 8,5km da fon	te
$(\Box) - (a)Fase A;$ (b) Fase B e (c) Fase C - SLM - 01C3.	8
Figura 2.5 – Rede trifásica de distribuição em 13,8kV – ITA- 03.	8
Figura 2.6 – Representação Eletrogeográfica – ITA-03.	9
Figura 2.7 – Perfil das tensões nas barras por unidade (pu) – ITA-03	10
Figura 2.8 – Forma de onda das tensões no Ponto P0(°) e na Barra B10 a 14.5km da	
fonte $(\Box) - (a)$ Fase A: (b) Fase B e (c) Fase C - ITA - 03.	11
Figura 2.9 – Sistema com a presenca do ARMTRS - compensação série do sistema SLM	1-
<i>01C3</i>	12
Figura 2.10 – Perfil da tensão da fase A nas barras sem e com o ARMTRS em pu – SLM	И-
01C3	12
Figura 2.11 – Perfil da tensão da fase B nas barras sem e com o ARMTRS em pu – SLM	Л-
01C3.	13
Figura 2.12 – Perfil da tensão da fase C nas barras sem e com o ARMTRS em pu – SLI	И-
01C3.	13
Figura 2.13 – Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 11 a 8,5km da fo	nte
$(\Box) - SLM - 01C3 - (a)Fase A;$ (b) Fase B e (c) Fase C.	14
Figura 2.14 – Sistema com a presença do ARMTRS - compensação série do sistema ITA	4-
03	15
Figura 2.15 – Perfil da tensão da fase A nas barras sem e com o ARMTRS em pu – ITA	
03	15
Figura 2.16 – Perfil da tensão da fase B nas barras sem e com o ARMTRS em pu – ITA	
03	16
Figura 2.17 – Perfil da tensão da fase C nas barras sem e com o ARMTRS em pu – ITA	-
03	16
Figura 2.18 – Forma de onda das tensões no Ponto P0(0) e na Barra B10 a 14,5km da	
fonte $(\Box) - (a)$ Fase A; (b) Fase B e (c) Fase C - ITA - 03.	17
Figura 2.19 – Perfil das tensões em regime permanente para diversos tipos de	
carregamento - SLM-01C3 – Fase A.	20
Figura 2.20 – Perfil das tensões em regime permanente para diversos tipos de	
carregamento - SLM-01C – Fase B.	20
Figura 2.21 – Perfil das tensões em regime permanente para diversos tipos de	
carregamento - SLM-01C3 – Fase C.	21
Figura 2.22 – Perfil das tensões em regime permanente para o ano 4, com e sem altera	ção
do BCS - SLM-01C3 - Fase A.	21
Figura 2.23 – Perfil das tensões em regime permanente para o ano 4, com e sem altera	ção
do BCS - SLM-01C3 - Fase B.	. 21
Figura 2.24 – Perfil das tensões em regime permanente para o ano 4, com e sem altera	ção
do BCS - SLM-01C3 - Fase C.	22

Figura 2.25 – Perfil das tensões em regime permanente para diversos tipos de
carregamento - Fase A – ITA-03
Figura 2.26 – Perfil das tensões em regime permanente para diversos tipos de
carregamento - Fase B – ITA-0323
Figura 2.27 – Perfil das tensões em regime permanente para diversos tipos de
carregamento - Fase C – ITA-03
Figura 2.28 – Curto circuito na barra de carga, a 8,56km da SE – SLM-01C3 24
Figura 2.29 – <i>Curto circuito na barra de carga, a 14,5km da SE – ITA-03</i>
Figura 2.30 – Corrente de carga durante um curto circuito na fase A – Fase A (\circ), fase B (\Box) e fase C (A) – (a)SI M 01C3 e (b) ITA 03
Figure 2 31 - Histograma em pu da corrente fundamental devido a um curto-circuito
monofásico na fase A a 8 5km do ponto de suprimento com o ARMTRS: (a)Ease B e
(b) Fase $C = SIM_0 \Omega C^3$
Figure 2.32 – Histograma em pu da corrente fundamental devido a um curto-circuito
monofásico na fase A a 14 5km do ponto de suprimento, com o ARMTRS: (a) Fase B
$(b) Fase C = ITA_{03}$
Figure 2.33 - Corrente para um curto- circuito aplicado na barra de carga a 8.5 km do
nonto de suprimento (a) sem a presenca do ARMTRS e (b) com a presenca do
ARMTRS = SIM-01C3
Figura 2.34 – Corrente para un curto- circuito aplicado na barra de carga a 145 km do
nonto de suprimento (a) sem a presenca do ARMTRS e (h) com a presenca do
$POMO uč suprimenio (u)sem u presençu uo ritarritis e (v) com u presençu uo$ $ARMTRS = ITA_03$
Figure 2.35 – Forma de onda das correntes: (\circ) Corrente no RNS (\Box) Corrente no RCS e
(Δ) Corrente Total = (a) SI M-01C3 e (b) ITA-03
Figure 2.36 – Curva de suportabilidade das células canacitivas
Figura 2.30 Curva de superiornadade das certaias capacitivas
$(a) SI M_0 01C3 \rho (b) ITA_0 03$
Figure 2.38 – Forma de onda da corrente no BCS durante um curto na fase $A = (a)Fase B$
e(b) Fase C - SLM-01C3: (c) Fase B $e(d)$ Fase C - ITA-03
Figura 2.39 – Forma de onda da tensão nos terminais do BCS antes e durante um curto no
fase $A = (a)SIM_001C3 e(b) ITA_003$
Figure 2.40 – Forma de onda da tensão no BCS durante um curto na fase $A = (a)Fase B e$
(a) $Fase C = SI M_0 1 C^3$: (c) $Fase B e (d) Fase C = ITA_0 3$
Figura 2.41 – Corrente de carga durante um curto circuito bifásico com terra entre as
fases A $e B = Fase A$ (\circ) fase B (\Box) e fase C (A) = (a)SI M_0 01C3 e (b) ITA-03 34
Figure 2.42 – Histograma em pu da corrente fundamental para a fase C devido a um
curto-circuito hifásico entre as fases A e B a 8 5km do nonto de suprimento, com o
ARMTRS = SIM-01C3
Figure 2.43 – Histograma em pu da corrente fundamental para a fase C devido a um
curto-circuito hifásico entre as fases A e R a 145km do nonto de suprimento com o
$ARMTRS = ITA_03$
Figure 2.44 – Forma de onda das correntes: (\circ) Corrente no RNS (\Box) Corrente no RCS a
Figure 2.47 Formulae ondulaus correntes. (\bigcirc) Corrente no Mys, (\square) Corrente no DCS e (Λ) Corrente Total = (a)Fase $\Lambda e(h)$ Fase $R = SIM_01C3$
Figure 2.45 – Forma de onda das correntes: (\bigcirc) Corrente no RNS (\square) Corrente no RCS a
(A) Corrente Total = $(a)Fase \Delta e(b)Fase R = IT\Delta_0$
Figure 2.46 - Forma de onda da corrente no RCS antes e durante um curto circuito
circuito hifásico com terra entre as fases $A \in R$ (a) Fase $A \in (h)$ Fase $R \in SIM \cap IC2$
CITCHIO O UJUSICO COM ICITU CIMIC US JUSES A C D = (u) TUSC A C (b) TUSC D - SLM-OTCS. 27

Figura 2.47 – Forma de onda da corrente no BCS antes e durante um curto-circuito circuito bifásico com terra entre as fases A e B - (a)Fase A e (b) Fase B - ITA-03...37 Figura 2.48 – Forma de onda da corrente no BCS na fase C durante um curto bifásico Figura 2.49 – Forma de onda da tensão nos terminais do BCS antes e durante um curto-Figura 2.50 – Forma de onda da tensão nos terminais do BCS antes e durante um curto-Figura 2.51 – Forma de onda da tensão no BCS na fase C durante um curto-circuito **Figura 2.52** – Corrente de carga durante um curto circuito trifásico – Fase A (\circ), fase B **Figura 2.53** – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e **Figura 2.54** – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e Figura 2.55 – Forma de onda da corrente no BCS antes e durante um curto-circuito Figura 2.56 – Forma de onda da corrente no BCS antes e durante um curto-circuito Figura 2.57 – Forma de onda da tensão nos terminais do BCS antes e durante um curtocircuito trifásico – (a)Fase a, (b) Fase B e (c) Fase C - SLM-01C3......45 Figura 2.58 – Forma de onda da tensão nos terminais do BCS antes e durante um curto-**Figura 2.59** – Perfil de tensão para cargas conectadas a montante do ARMTRS durante Figura 2.60 – Perfil de tensão para cargas conectadas a montante do ARMTRS durante um curto-circuito monofásico na fase A a jusante do ARMTRS – ITA-03 (Projeto sem **Figura 2.62** – Perfil de tensão para cargas conectadas a montante do ARMTRS durante um curto-circuito a jusante na fase A – ITA-03. 50 **Figura 2.63** – Forma de onda da corrente no reator saturado, antes, durante e depois um **Figura 2.64** – Arquitetura do ARMTRS com resistência de amortecimento – (a)SLM-01C3 **Figura 2.65** – Forma de onda da corrente no RNS antes, durante e depois um defeito com **Figura 2.66** – (a) Arquitetura ARMTRS – B; (b) Arquitetura ARMTRS – C; (c) Arquitetura **Figura 2.67** – Forma de onda da tensão no reator linear durante um defeito – SLM-01C3. Figura 2.68 – Comportamento do reator naturalmente saturado com tensão senoidal **Figura 2.69** – Forma de onda da tensão no RLS (\circ) e da corrente no RNS (\Box) durante um

Figura 3.1 – Decomposição do RLS na Arquitetura do ARMTRS para o alimentador de	
SLM-01C3	. 57
Figura 3.2 – Esquemático do RLS com núcleo de ferro.	. 58
Figura 3.3 – Reator Linear Série com núcleo de ar aplicado em alta-tensão	. 59
Figura 3.4 – Estruturas eletromagnéticas em monoblocos.	. 60
Figura 3.5 – Estruturas eletromagnéticas individuais por fase	. 60
Figura 3.6 – (a) Modelo ferromagnético da Estrutura Assimétrica e (b) Modelo	
ferromagnético da Estrutura Simétrica	. 61
Figura 3.7 – Curva de Magnetização (BxH) do aço M125-27-E004.	. 64
Figura 3.8 – Circuito com um único núcleo.	. 64
Figura 3.9 – Característica de magnetização	. 65
Figura 3.10 – Seção transversal do núcleo do RNS com quatro step	. 67
Figura 3.11 – Curva V x I para a Estrutura Assimétrica e Simétrica	. 69
Figura 3.12 – Bobina do RNS.	. 70
Figura 3.13 – Fenômeno de espraiamento (Fringing Flux).	. 71
Figura 3.14 – Vista superior do ARMTRS – RLS com a mesma área do RNS	. 72
Figura 3.15 – Seção circular do RLS com 4 steps.	. 73
Figura 3.16 - Bobina do RLS.	. 77
Figura 3.17 – Layout de uma bobina de núcleo de ar.	. 78
Figura 3.18 – Bobina de camada única com forma cilíndrica	. 78
Figura 3.19 – Bobina Longa e Curta.	. 79
Figura 3.20 – Dimensões físicas da estrutura ferromagnética Assimétrica (todas as	
unidades estão em milímetros) - SLM-01C3	. 84
Figura 3.21 – Dimensões físicas da estrutura ferromagnética Assimétrica – Vista Super	rior
dos núcleos (todas as unidades estão em milímetros) - SLM-01C3	. 85
Figura 3.22 – Dimensões físicas da estrutura ferromagnética Simétrica (todas as unida	des
estão em milimetros) - SLM-01C3.	. 85
Figura 3.23 – Dimensoes fisicas da estrutura ferromagnetica Simetrica – Vista Superio	r oc
aos nucleos (todas as unidades estao em mulmetros) – SLM - $01C3$. 80
Figura 5.24 – Dimensoes fisicas aa estrutura ferromagnetica Assimetrica (toaas as	07
uniaaaes estao em milimetros) – 11A-03.	8/
Figura 5.25 – Dimensoes fisicas da estrutura ferromagnetica Assimetrica – vista Super	rior 07
aos nucleos (loads as unidades estad em milimetros) – 11A-05	. 0/
rigura 5.20 – Dimensoles Jisicas da estrutura jerromagnetica Simetrica (todas as unida	ues 88
Figure 3 27 – Dimensões físicas da estrutura ferromagnética Simétrica – Vista Superio	. 00 r
dos núcleos (todas as unidades estão em milímetros) ITA-03	' 88
Figure 3 28 – A rauitetura dos enrolamentos – Estrutura ferromagnética Assimétrica	. 00
(todas as unidades estão em milímetros) – SLM-01C3	90
Figura 3.29 – Arauitetura dos enrolamentos – Estrutura ferromagnética Simétrica (tod	as.
as unidades estão em milímetros) – SLM-01C3.	90
Figura 3.30 – Arauitetura dos enrolamentos – Estrutura ferromagnética Assimétrica	.,,,
(todas as unidades estão em milímetros) – ITA-01C3	91
Figura 3.31 – Arquitetura dos enrolamentos – Estrutura ferromagnética Simétrica (tod	as
as unidades estão em milímetros) – ITA-01C3.	. 92
Figura 3.32 – Bobina curta (a) Vista Superior e (b) Vista Frontal.	93
Figura 3.33 – Bobina Longa (a) Vista superior e (b) Vista frontal	. 93
Figura 4.1 – (A) Representa umas das bobinas construídas; (B) Representa as bobinas	
com as chapas de aço parcialmente montadas; (C) Representa a forma de montago	ет

dos protótipos; (D) Representa a Estrutura Assimétrica construída e (E) Represen	ta a
Estrutura Simétrica construída	95
Figura 4.2 – Montagem do sistema para experimentação e simulação	96
Figura 4.3 – Circuito dual equivalente.	98
Figura 4.4 – Montagem do sistema Dualidade da Estrutura Assimétrica.	98
Figura 4.5 – Montagem do sistema Dualidade da Estrutura Simétrica	99
Figura 4.6 – <i>Curva característica</i> $\lambda x i$	99
Figura 4.7 – Curva característica V x i.	100
Figura 4.8 – <i>Forma de onda da corrente de carga</i> (Δ), <i>RNS</i> (\circ) <i>e BCS</i> (\Box) <i>para a</i>	
Estrutura Assimétrica em regime permanente, no transitório e durante um defeito.	100
Figura 4.9 – Forma de onda da corrente de carga (Δ), RNS (\circ) e BCS (\Box) para a	
Estrutura Simétrica em regime permanente, no transitório e durante um defeito	101
Figura 4.10 – Forma de onda da tensão (○) e da corrente (□) no RNS para a Estrutura	ı
Assimétrica em regime permanente, no transitório e durante um defeito	101
Figura 4.11 – Forma de onda da tensão (○) e da corrente (□) no RNS para a Estrutura	l
Simétrica em regime permanente, no transitório e durante um defeito	102
Figura 4.12 – Forma de onda da tensão na carga para a Estrutura Assimétrica em reg	ime
permanente, no transitório e durante um defeito.	102
Figura 4.13 – Forma de onda da tensão na carga para a Estrutura Simétrica em regim	ıe
permanente, no transitório e durante um defeito.	103
Figura 4.14 – Forma de onda da corrente de carga para a Estrutura Assimétrica. Type	2 98
(\circ), Type 96 (Δ) e Experimento (\Box).	104
Figura 4. 15 – Forma de onda da corrente de carga para a Estrutura Simétrica. Type 9	98
(\circ), Type 96 (Δ) e Experimento (\Box).	104
Figura 4.16 – Forma de onda da tensão na carga para a Estrutura Assimétrica. Type 9	98
(\circ), Type 96 (Δ) e Experimento (\Box).	105
Figura 4.17 – Forma de onda da tensão na carga para a Estrutura Simétrica. Type 98	(0),
<i>Type 96 (Δ) e Experimento (</i> \Box <i>).</i>	105
Figura 4.18 – Forma de onda da tensão no BCS e RNS para a Estrutura Assimétrica. T	Гуре
98 (\circ), Type 96 (Δ) e Experimento (\Box).	106
Figura 4.19 – Forma de onda da tensão no BCS e RNS para a Estrutura Simétrica. Typ	рe
98 (\circ), Type 96 (Δ) e Experimento (\Box).	106
Figura 4.20 – Forma de onda da corrente no BCS para a Estrutura Assimétrica. Type	98
(\circ), Type 96 (Δ) e Experimento (\Box).	107
Figura 4.21 – Forma de onda da corrente no BCS para a Estrutura Simétrica. Type 98	;
(\circ), Type 96 (Δ) e Experimento (\Box).	107
Figura 4.22 – Forma de onda da corrente no RNS para a Estrutura Assimétrica. Type	98
(\circ), Type 96 (Δ) e Experimento (\Box).	108
Figura 4.23 – Forma de onda da corrente no RNS para a Estrutura Simétrica. Type 98	;
(\circ), Type 96 (Δ) e Experimento (\Box).	108
Figura 4.24 – Forma de onda da corrente de carga para a Estrutura Assimétrica com	
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)	110
Figura 4.25 – Forma de onda da corrente de carga para a Estrutura Simétrica com	
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)	110
Figura 4.26 – Forma de onda da tensão na carga para a Estrutura Assimétrica com	
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)	111
Figura 4.27 – Forma de onda da tensão na carga para a Estrutura Simétrica com	
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)	111

Figura 4.28 – Forma de onda da tensão no BCS e RNS para a Estrutura Assimétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.29 – Forma de onda da tensão no BCS e RNS para a Estrutura Simétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.30 – Forma de onda da corrente no BCS para a Estrutura Assimétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.31 – Forma de onda da corrente no BCS para a Estrutura Simétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.32 – Forma de onda da corrente no RNS para a Estrutura Assimétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.33 – Forma de onda da corrente no RNS para a Estrutura Simétrica com
dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box)
Figura 4.34 – Forma de onda da corrente no RNS para a Estrutura Assimétrica antes,
durante e depois da retirada de um defeito – Resultado experimental
Figura 4.35 – Forma de onda da corrente no RNS para a Estrutura Simétrica antes,
durante e depois da retirada de um defeito – Resultado experimental
Figura 4.36 – Forma de onda da corrente no RNS para a Estrutura Assimétrica antes,
durante e depois da retirada de um defeito – Resultado de Simulação
Figura 4.37 – Forma de onda da corrente no RNS para a Estrutura Simétrica antes,
durante e depois da retirada de um defeito – Resultado de Simulação
Figura 4.38 – Forma de onda da corrente no RNS para a Estrutura Assimétrica com a
bobina própria da Estrutura Simétrica. Antes, durante e depois da retirada de um
defeito – Resultado de Simulação118
Figura 4.39 – Forma de onda da corrente no RNS para a Estrutura Simétrica com a
bobina própria da Estrutura Assimétrica. Antes, durante e depois da retirada de um
defeito – Resultado de Simulação119
Figura 4.40 – Curva V x I sob a carga a jusante do ARMTRS
Figura 4.41 – Linhas de fluxo da Estrutura Assimétrica após simulação em regime
permanente
Figura 4.42 – Valores de indução magnética obtidos através do FEMM para a Estrutura
Assimétrica em regime permanente12
Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura
Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.45 – Resultados de Simulação obtidos através do FEMM para a Estrutura
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 123 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 123 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente.
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito.
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito.
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito. 124 Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito.
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 123 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito. 124 Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito. 124
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. 122 Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito. 124 Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito. 124 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. 122 Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito. 124 Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito. 124 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito. 124 124 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito. 124
 Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente. 122 Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente. 122 Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.46 – Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente. 122 Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito. 124 Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito. 124 Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito. 125 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito. 125 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito. 125 Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito. 125 Figura 6.1 - Forma de onda das tensões no Ponto P0(○) e na Barra 8,5km (□) – SLM-

Figura 6.2 - Forma de onda das tensões no Ponto P0(○) e na Barra 8,5km (□) – SLM-
01C3 - Ano 2
Figura 6.3 - Forma de onda das tensoes no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) – 5LM- 01C3 Ano 3
Figura 6.4 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 8.5km (\Box) – SLM-
01C3 - Ano 4
Figura 6.5 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 8,5km (\Box) – SLM-
01C3 – Ano 5
Figura 6.6 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) – SLM-
01C3 - Ano 6. 148
Figura 6.7 - Forma de onda das tensões no Ponto $P0(\circ)$
Figura 0.8 - Forma ae onaa aas tensoes no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) – 5LM-
Figure 6.9 - Forma de onda das tensões no Ponto $PO(\circ)$ 140
Figura 6.10 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 14.5km (\Box) – <i>ITA-03</i>
-Ano 2
Figura 6.11 - Forma de onda das tensões no Ponto P0(○) e na Barra 14,5km (□) –ITA-03
- Ano 3
Figura 6.12 - Forma de onda das tensões no Ponto P0(○) e na Barra 14,5km (□) –ITA-03
- Ano 4
Figura 6.13 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03
$-Ano \mathcal{D}.$
Figura 6.14 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –11A-05 - Ano 6
Figura 6.15 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14 5km (\Box) –ITA-03
-Ano 7
Figura 6.16 - Forma de onda das tensões no Ponto P0(○) e na Barra 14,5km (□) –ITA-03
- Ano 8
Figura 6.17 - Forma de onda das tensões no Ponto P0(○) e na Barra 14,5km (□) –ITA-03
- Ano 9
Figura 6.18 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03
$-Ano \ 10.$
Figura 6.19 - Forma de onda da tensão no BCS para a Arquitetura ARMIRS – B (antes, durante o dopoio do um defeito) SIM 01C3
Figure 6 20 – Forma de onda da corrente no RNS principal para a Arauitetura ARMTRS
-B (antes durante e denois de um defeito) – SLM01C3 15(
Figura 6.21 – Forma de onda da tensão no BCS para a Arquitetura ARMTRS – C (antes,
durante e depois de um defeito) – SLM-01C3
Figura 6.22 – Forma de onda da corrente no RNS para a Arquitetura ARMTRS – C
(antes, durante e depois de um defeito) – SLM-01C3
Figura 6.23 - Forma de onda da tensão no BCS para a Arquitetura ARMTRS – D (antes,
durante e depois de um defeito) – SLM-01C3
Figura 6.24 – Forma de onda da corrente no RNS principal para a Arquitetura ARMTRS
-D (antes, aurante e aepois ae um aejeito) $-SLM-01C3$
Figura 0.25 - Formu ae onau au tensuo no BCS para a Arquitetura ARMIRS – E (antes, durante e depois de um defeito) – SLM-01C3 15°
Figura 6.26 - Forma de onda da corrente no RNS principal para a Arauitetura ARMTRS
-E (antes, durante e depois de um defeito) – SLM-01C3

Figura 7.1 – Desenho das dimensões físicas de projeto do protótipo de banca	da 380V
para a Estrutura Assimétrica (todas as unidades estão em milímetros)	
Figura 7.2 – Desenho da arquitetura dos enrolamentos do protótipo de banca	ıda 380V
para a Estrutura Assimétrica (todas as unidades estão em milímetros)	
Figura 7.3 – Desenho das dimensões físicas de projeto do protótipo de banca	da 380V
para a Estrutura Assimétrica (todas as unidades estão em milímetros)	
Figura 7.4 – Desenho da arquitetura dos enrolamentos do protótipo de banca	ıda 380V
para a Estrutura Assimétrica (todas as unidades estão em milímetros)	
Figura 7.5 – (a) Curva de magnetização ($B \times H$) e (b) Curva de perdas magne	éticas184
Figura 7.6 - Característica v x i da impedância equivalente do sistema	
Figura 7.7- Característica v x i da carga.	
Figura 7.8 - Característica v x i da defeito	
Figura 7.9 - Característica v x i do BCS.	
Figura 7.10 - Característica v x i do RNS para a Estrutura Assimétrica	
Figura 7.11 - Característica $\lambda x i$ do RNS para a Estrutura Assimétrica	
Figura 7.12 - Característica v x i do RNS para a Estrutura Simétrica	
Figura 7.13 - Característica λ x i do RNS para a Estrutura Simétrica	193
Figura 7.14 - Característica v x i do RLS para a Estrutura Assimétrica	195
Figura 7.15 - Característica y x i do RLS para a Estrutura Simétrica	196
Figure 7.16 – Curva λ x i usada para a modelagem dos protótipos com eleme	nto tvne 96
sem dualidade eletromagnética – (\Box) Estrutura Assimétrica e (\Diamond) Estrutur	a Simétrica
	197 u Simeirieu.
Figure 7.17 – Curva de histerese do protótipo de bancada	
Figura 7.17 Curva de histerese do protocipo de bancada	Iada
Figura 7.16 – Curacteristica $\lambda x_i = 1$ and a Estimativa Assimetrica com analia alatromagnática (0) Ratorno (\Box) lugo 1 (A) lugo 2 a (r) RNS alama	$\frac{1}{100}$
$etetromugneticu = (\vee)$ Retorno, (\Box) $Jugo 1, (\Box) Jugo 2 e(x) Rivs – etemer$	100 <i>type</i> 90.
Figure 710 Característica) r i Para a Estrutura Assimátrica com dualid	
Figura 7.19 - Curucieristica $x x t = Fura u Estrutura Assimetrica com audula alatromagnática (A) Patorno (\Box) lugo 1 (A) lugo 2 a (x) PNS alamante$	uue
$eterromugnetica = (\lor)$ Ketorno, (\Box) Jugo 1, (\Box) Jugo 2 e (x) Kivs etemento	100 iype 90 .
Eiguno 7.20 Caugo touística luci Dana a Estudante Simútura com dualida.	
Figura 7.20 – Caracteristica $\lambda x i$ – Para a Estrutura Simetrica com auditada	le
eletromagnetica – (\lor) Kelorno, (\sqcup) Jugo 1, (\varDelta) Jugo 2 e (x) KNS – elemen	100 <i>type</i> 98.
Figure 7.21 Canadamística luci Dana a Estadoura Similaria de dida	198 Ia
Figura 1.21 - Curucieristica $\lambda x = Para \ a \ Estrutura \ Simetrica \ com \ aualidada$	e tura 06
eleiromagnetica – (\lor) Kelorno, (\sqcup) Jugo 1, (\varDelta) Jugo 2 e (x) RNS elemento	<i>iype</i> 90.

Lista de Tabelas

Tabela 2.1 – Configuração do Sistema Elétrico trifásico com cargas distribuídas –
Alimentador – SLM - 01C36
Tabela 2.2 – Configuração do Sistema Elétrico trifásico com cargas distribuídas –
<i>Alimentador – ITA- 03</i> 9
Tabela 2.3 – Pontos de entrega ou conexão em Tensão Nominal superior a 1 kV e inferior
a 69 kV, conforme Resolução ANEEL Nº 505, de 26.11.201111
Tabela 2.4 – Valores da tensão nas barras de cargas antes e depois da compensação série – SLM-01C3
Tabela 2.5 – Valores da tensão nas barras de cargas antes e depois da compensação série – ITA-03
Tabela 2.6 – Regulação de Tensão promovida pelo ARMTRS para diferentes situações de agraga SIM_01C3
Tabala 27 – Regulação de Tenção promovida pelo ARMTRS para diferentes situações de
cargas - ITA-01C3
Tabela 28 – Corrente Fundamental e harmônico nas fases são devido a um curto-circuito
monofásico na fase A, a 8,5km do ponto de suprimento, com ARMTRS – SLM-01C3.
Tabala 20. Commente Eurodamental e harmônico nas fasos são devido a um euros einevito
monofásico na fase A a 14 5km do ponto de suprimento, com ARMTRS ITA-03 27
Tabela 2 10 - Corrente Fundamental e harmônico na fase sã (C) devido a um curto-
circuito hifásico com terra entre as fases A e B a 8 5km do ponto de suprimento, com
$\Delta RMTRS = SIM_01C3$
Tabela 2 11 - Corrente Fundamental e harmônico na fase sã (C) devido a um curto-
circuito hifásico com terra entre as fases A e B a 14 5km do ponto de suprimento
com ARMTRS – ITA-03
Tabela 2.12 – Corrente no BCS e em cada célula durante um curto bifásico com a terra
entre as fases A e $B - SLM-01C3$ 37
Tabela 2.13 – Corrente no BCS e em cada célula durante um curto bifásico com a terra
entre as fases $A \in B - ITA-03$.
Tabela 2.14 – Corrente no BCS e em cada célula durante um curto trifásico nas três fases
- <i>SLM-01C3</i>
Tabela 2.15 – Corrente no BCS e em cada célula durante um curto trifásico nas três fases –
ITA-03
Tabela 2.16 – Composição probabilística entre o tipo das faltas e sua duração
Tabela 2.17 – Tensão em pu a montante do ARMTRS durante um curto-circuito
monofásico na fase A a jusante do ARMTRS – SLM-01C3
Tabela 2.18 – Tensão em pu a montante do ARMTRS durante um curto-circuito
monofásico na fase A a jusante do ARMTRS – ITA-03 (Projeto sem ajuste)
Tabela 2.19 – Tensão em pu a montante do ARMTRS durante um curto-circuito
monofásico na fase Á a jusante do ARMTRS – ITA-03
Tabela 2.20 – Resultados obtidos para os cincos tipos de arquitetura do ARMTRS 53
Tabela 3.1 – <i>Alimentador</i> – <i>SLM</i> - <i>01C3</i>
Tabela 3.2 – Curva de magnetização com 48 ponto
Tabela 3.3 - Fatores de Forma para Seção Circular e números de steps
Tabela 3.4 – Indução no RLS ao longo dos anos. 75
Tabela 3.5 – Densidade de corrente no RLS ao longo dos anos.76

Tabela 3.6 – Valor de K para bobinas curta.	80
Tabela 3.7 - Valor de K para bobinas longas	
Tabela 4.1 – Dados do Sistema para experimento e simulação.	
Tabela 4.2 – Comparação dos resultados experimentados e simulados	109
Tabela 4.3 – Comparação dos resultados experimentados e simulados com duali	dade
eletromagnética.	
Tabela 6.1 – Características do Sistema de distribuição – 13,8kV – SLM-01C3	
Tabela 6.2 – Características do Sistema de distribuição – 13,8kV – ITA-03	
Tabela 7.1 – Parâmetros elétricos do Capacitor.	
Tabela 7.2 - Curva B x H e de perdas fornecida pelo fabricante com 29 pontos	
Tabela 7.3 – Resultado das medidas do ensaio para obter a reatância equivalent	e do
sistema	
Tabela 7.4 – Resultado das medidas do ensaio para obter a resistência que repre	esenta a
carga do sistema	
Tabela 7.5 - Resultado das medidas do ensaio para obter a resistência que repre	senta o
defeito.	
Tabela 7.6 - Resultado das medidas do ensaio para obter a reatância capacitiva	do BCS.
Tabela 7.7 – Resultados das medidas do ensaio para obter a resistência do RNS	para a
Estrutura Assimétrica	
Tabela 7.8 – Resultados das medidas do ensaio para obter a resistência do RNS	para a
Estrutura Simétrica	
Tabela 7.9 – Resultado das medidas do ensaio para obter as perdas totais no fer	ro do
RNS	
Tabela 7.10 – Resultado das medidas do ensaio para obter as características λx	i e v x i
do RNS da Estrutura Assimétrica	
Tabela 7.11 – Resultado das medidas do ensaio para obter as características λx	i e v x i
do RNS da Estrutura Simétrica	
Tabela 7.12 – Resultados das medidas do ensaio para obter a resistência do RLS	l para a
Estrutura Assimétrica	
Tabela 7.13 – Resultados das medidas do ensaio para obter a resistência do RLS	l para a
Estrutura Simétrica	
Tabela 7.14 – Resultado das medidas do ensaio para obter a indutância dos RLS	do
ARMTRS para a Estrutura Assimétrica	
Tabela 7.15 – Resultado das medidas do ensaio para obter a indutância dos RLS	do
ARMTRS para a Estrutura Simétrica	
Tabela 7.16 – Resultados das medidas do ensaio para auto-regulação da carga o	conectada
a jusante do ARMTRS	199

Lista de Abreviaturas

ARMTRS	Auto-Regulador Magnético de Tensão a Reator Saturado			
CELPE	Companhia Energética de Pernambuco			
P&D	Projeto e Desenvolvimento			
UFPE	Universidade Federal de Pernambuco			
DEE	Departamento de Engenharia Elétrica			
LDSP	Laboratório Digital de Sistema de Potência			
BCS	Banco de Capacitor Série			
RLS	Reator Linear Série			
RNS	Reator Naturalmente Saturado			
EMTP-ATP	Electro-Magnetic Transient Program - Alternative Transient			
	Program			
SLM-01C3	Alimentador de São Lourenço da Mata			
ITA-03	Alimentador de Itamaracá			
COMPESA	Companhia Pernambucana de Saneamento			
ANEEL	Agência Nacional de Energia Elétrica			
LTC	Load Tap Changers			
THD	Total Harmonic Distortion			
GEC	General Electric Company			
FEMM	Finite Element Method Magnetics			

Lista de Símbolos

В	Densidade de fluxo magnético [T]			
\mathcal{B}_{S}	Valor de densidade de fluxo magnético de início de saturação [T]			
$\boldsymbol{\mathcal{B}}_{MAX}$	Valor de pico da densidade de fluxo magnético [T]			
H	Campo magnético [A/m]			
λ	Fluxo concatenado [Wb·esp]			
Ν	Número de espiras			
f	Frequência do sistema [Hz]			
f_e	Fator de empilhamento			
ω	Frequência angular [rad/s]			
t	Tempo [s]			
$\mathcal{H}_{\mathcal{C}}$	Campo magnético coercitivo [A/m]			
F _{mmg}	Força magnetomotriz [esp·A]			
μ_0	Permeabilidade magnética do ar [T.m/A]			
μ_r	Permeabilidade relativa do meio			
g	Comprimento do entreferro [mm]			
A	Área da seção transversal do circuito magnético do RNS [m ²]			
$A_{\rm g}$	Área geométrica da seção transversal do circuito magnético do			
	RNS $[m^2]$			
l	Comprimento do caminho magnético médio do circuito magnético			
	do RNS [m]			
i	Corrente [A]			
$S_{cc3\phi}$	Potência de curto-circuito trifásico [MVA]			
X _{Cap_Liquida}	Reatância capacitiva líquida do sistema [Ω]			
X _{RLS}	Reatância do Reator Linear Série [Ω]			
X_{Ar}	Reatância do Reator de Núcleo de Ar [Ω]			
X _{BCS}	Reatância do Banco de Capacitor Série [Ω]			
L_m	Indutância de magnetização do Reator Naturalmente Saturado [H]			
L _{sat}	Indutância de saturação do Reator Naturalmente Saturado [H]			
ϕ	Fluxo magnético [Wb]			

$\phi_{m cup x}$	Fluxo magnético máximo [Wb]
R _{BOB}	Resistência da bobina [Ω]
ρ	Resistividade do cobre $[\Omega.m]$
F _{Flux}	Fringing Flux
R	Relutância [A/Wb]
d	Densidade de corrente [A/m ²]
К	Fator de forma de Nagaoka

CAPITULO 1 INTRODUÇÃO

1.1 - Considerações inicias

A oferta de energia elétrica com um elevado padrão de qualidade é um propósito permanente da Companhia Energética de Pernambuco – CELPE, não somente para cumprimento dos índices impostos pelo contrato de concessão firmado com o poder público, mas também pela satisfação de oferecer aos clientes um produto que atenda a todos os requisitos exigidos pelas normas vigentes. Com esse intuito, todos os fenômenos elétricos que incidem no sistema de distribuição operado pela CELPE e produzem variações significativas na tensão da rede são cuidadosamente investigados com vistas à identificação das medidas capazes de atenuar adequadamente os seus efeitos. Orientada por esse paradigma, a CELPE firmou um contrato de projeto de Pesquisa e Desenvolvimento – P&D do período 2009-2010 com a Universidade Federal de Pernambuco titulado *Auto-Regulador Magnético de Tensão para Redes Primária de Distribuição a Reator Saturado; Protótipo Conceitual e Experimental,* para o desenvolvimento de um dispositivo capaz de não somente regular a tensão da rede elétrica, como também limitar a corrente de curto-circuito e controlar os afundamentos e elevação de tensão dos consumidores conectados a montante durante a ocorrência de um defeito a jusante do equipamento.

O Auto-Regulador Magnético de Tensão para Redes Primária de Distribuição a Reator Saturado, de agora por diante simplesmente ARMTRS, a ser instalado na rede elétrica da CELPE é composto basicamente de três elementos:

- Banco de capacitores série (BCS), destinado à compensação série da rede;
- Reator linear série (RLS) com a finalidade de limitar a corrente de curto-circuito produzida pela incidência de defeitos ou oriundas de sobrecargas e controlar o afundamento e elevação da tensão;

• Reator Naturalmente Saturado (RNS), o qual exerce a função de controle do banco de capacitores, removendo esse elemento quando da incidência de um defeito.

Os elementos citados estão interligados entre si conforme o arranjo mostrado na Figura 1.1, onde o RLS e o BCS encontram-se conectados em série e o RNS em paralelo.

Figura 1.1 – *Arquitetura do ARMTRS.*

Com essa arquitetura, o ARMTRS apresenta o seguinte modo operativo quando conectada em série com uma rede de transmissão:

- Em condições normais de funcionamento, a corrente solicitada pela rede é insuficiente para estabelecer um regime de saturação no RNS, ou seja, o mesmo opera aos moldes de uma chave aberta. Nessas circunstâncias, o conjunto formado pelo RLS e o BCS oferece uma reatância liquida capacitiva, prestando-se o dispositivo como um compensador série para a queda de tensão na rede;
- Na ocorrência de uma corrente elevada, devido a uma falha ou a um regime de sobrecarga, o RNS entra em saturação, produzindo um curto circuito nos terminais do BCS e parte do RLS. A reatância liquida do ARMTRS torna-se agora, indutiva, e esse dispositivo passa não só a exercer a função de limitador de corrente de curto como também a controlar o afundamento e elevação das tensões das cargas conectada a montante dele.

O programa EMTP-ATP foi utilizado como ferramenta para modelagem e análise do ARMTRS, por dispor dos elementos necessários para modelar seus componentes.

Neste trabalho serão expostas todas as etapas do dimensionamento dos componentes do ARMTRS, assim como todos os resultados de simulação em redes reais

de distribuição e resultados experimentais obtidos com modelos reduzidos para laboratório do ARMTRS, tomando-se como base os estudos desenvolvidos pelo Laboratório Digital de Sistemas de Potência – LDSP da Universidade Federal de Pernambuco – UFPE referentes à utilização de reatores naturalmente saturados no sistema elétrico.

1.2 - Objetivos pretendidos

O presente trabalho tem os seguintes objetivos:

- Apresentar o desenvolvimento completo do dimensionamento do ARMTRS, considerando o projeto de todos os seus componentes, inicialmente proposto em [1], avaliando o seu desempenho como regulador de tensão em regime permanente, limitador de corrente de curto e controlador de afundamento de tensão em regime transitório de operação;
- Efetuar estudos para a fabricação de um cabeça de série a ser instalado em um ramal de distribuição trifásico em 13,8 kV da CELPE a ser construído no projeto de P&D do ciclo 2011-2012 titulado como Auto-Regulador Magnético de tensão a Reator Naturalmente Saturado ARMTRS, em 13,8kV Cabeça de Série;
- Apresentar os resultados obtidos do projeto de P&D do ciclo 2009-2010 titulado como Auto-Regulador Magnético de Tensão para Redes Primária de Distribuição a Reator Saturado - Protótipo Conceitual e Experimental;

1.3 - Apresentação do trabalho

Este trabalho é dividido em 05 capítulos, conforme exposto:

 Capítulo 2 – Neste capitulo serão apresentados todas as análise em regime permanente senoidal e transitório para redes reais de distribuição da CELPE em 13,8kV;

- Capitulo 3 Neste capítulo são apresentados os cálculos usados no dimensionamento dos componentes do ARMTRS, assim como os desenhos de projetos;
- Capítulo 4 Neste capitulo serão mostrados todos os resultados obtidos em laboratórios para protótipo de bancada do ARMTRS;
- Capítulo 5 Apresenta as conclusões do trabalho, além de sugestão para trabalhos posteriores relativos ao tema;

CAPITULO 2

APLICAÇÃO DO ARMTRS EM REDES TRIFÁSICAS DE DISTRIBUIÇÃO EM 13,8 kV

Com o intuito de analisar o comportamento do ARMTRS em redes trifásicas de distribuição da CELPE na tensão de 13,8kV, foram realizadas simulações no programa EMTP-ATP para dois sistemas elétricos com cargas distribuídas ao longo dos alimentadores, denominados de SLM-01C3 e ITA-03 sendo esse tipo de sistema encontrado com maior freqüência nas concessionárias de distribuição de energia elétrica.

Visando retratar o desequilíbrio de fases normalmente existente nos sistemas de distribuição de energia elétrica, foi considerado um desbalanço na carga de aproximadamente +5% e -5% entre as fases A e C, respectivamente.

2.1 – Análise do sistema elétrico

2.1.1 - Alimentador - SLM-01C3

O primeiro alimentador analisado, nomeado como SLM - 01C3, é mostrado na Figura 2.1 e cujas características estão descritas no Apêndice 6.1.

Figura 2.1 – Rede trifásica de distribuição em 13,8kV – SLM - 01C3.

A Representação eletrogeográfica do alimentador SLM-01C3 é mostrado na Figura 2.2 destacando-se a rede tronco, cuja extensão total é de aproximadamente 8,5 km apresentando cargas com características diversificadas ao longo de sua extensão.

Figura 2.2 – Representação Eletrogeográfica – SLM-01C3.

Para as análises em regime permanente e regime transitório de operação, o sistema foi modelado considerando os centros de carga distribuídos nas barras conforme mostrado na Tabela 2.1.

Tre	cho	Cabo	Iadm-Cabo	Distância	Impedância da	Tensão na
Barra início	Barra Fim	-	(A)	(<i>km</i>)	carga (barra fim) (Ω)	barra fim (pu)
1 (SE)	2	C-95	430	0,643	-	0,995
2	3	C-95	430	1,346	1264,4+j536,0	0,994
2	4	C-95	430	1,084	2012,1+j853,0	0,987
4	5	S-40	340	1,666	4947,8 +j2097,4	0,974
5	6	S-20	270	0,236	-	0,954
6	7	S-20	270	0,457	6399,1+j2712,7	0,923
7	8	S-10	230	0,4	-	0,919
8	9 (*)	S-04	140	0,75	201,5+j85,4	0,908
8	10	S-10	230	0,342	-	0,901
10	11	S-04	140	3,69	1350,1+j1350,1	0,898

Tabela 2.1 – Configuração do Sistema Elétrico trifásico com cargas distribuídas – Alimentador – SLM - 01C3.

(*) COMPESA: S=2,0 MVA

O sistema de alimentação está representado pelo seu equivalente de Thévenin na barra de 13,8kV (ponto P0) como mostra a Figura 2.1. Para essa configuração, a queda de tensão a 8,5km do alimentador é de aproximadamente 10% da tensão da barra P0, justificando a utilização de métodos para a regulação da tensão nesse ponto. O *script* desse sistema em ATP é mostrado no Apêndice 6.2.

A Figura 2.3 apresenta o perfil das tensões levantado com simulações realizadas em EMTP-ATP, para as condições inicialmente consideradas, em por-unidade (pu) da tensão na barra P0.

Figura 2.3 – Perfil das tensões nas barras por unidade (pu) – SLM -01C3.

Já a Figuras 2.4 representa a forma de onda das tensões nas barras de suprimento e de carga.

Figura 2.4 – Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 11 a 8,5km da fonte (\Box) – (a)Fase A; (b) Fase B e (c) Fase C – SLM - 01C3.

2.1.2 - Alimentador - ITA-03

O segundo alimentador analisado, nomeado como ITA-03, é mostrado na Figuras 2.5 e cujas características estão descritas no Apêndice 6.3.

A Representação eletrogeográfica do alimentador ITA-03 é mostrado na Figura 2.6 destacando-se a rede tronco, cuja extensão total é de aproximadamente 14,5km apresentando cargas com características diversificadas ao longo de sua extensão.

Figura 2.6 – Representação Eletrogeográfica – ITA-03.

Para as análises em regime permanente e regime transitório de operação, o sistema foi modelado considerando os centros de carga distribuídos nas barras conforme mostrado na Tabela 2.2.

Trec	cho	Cabo	Iadm-Cabo	Distância	Impedância da carga	Tensão na barra fim
Barra	Barra		(A)	(<i>km</i>)	(barra fim) (Ω)	(<i>pu</i>)
início	Fim					
1 (SE)	2	S-20	270	1,0	879,6 +j372,9	0,988
2	3	S-20	270	0,4	-	0,984
3	4	S-10	230	1,6	1522,4 + j645,4	0,968
4	5	S-10	230	2,5	691,1 + j293	0,946
5	6	S-10	230	2,0	-	0,934
6	7	S-10	230	0,3	1275,4 + j540,7	0,932
7	8	S-10	230	4,1	718,9 +j304,8	0,913
8	9	S-10	230	1,5	1557,6 + j660,3	0,910
9	10	P-35	168	1,1	1869,2 + j792,4	0,909

Tabela 2.2 – Configuração do Sistema Elétrico trifásico com cargas distribuídas – Alimentador – ITA- 03.

O sistema de alimentação está representado pelo seu equivalente de Thévenin na barra de 13,8kV (ponto P0) como mostra a Figura 2.5. Para essa configuração, a queda de tensão a 14,5 km do alimentador é de aproximadamente 9% da tensão da barra P0,

justificando a utilização de métodos para a regulação da tensão nesses pontos. O *script* para modelagem desse sistema em ATP é mostrado no Apêndice 6.4.

A Figura 2.7 apresenta o perfil das tensões levantado com simulações realizadas em EMTP-ATP, para as condições inicialmente consideradas, em por-unidade da tensão na barra P0.

Figura 2.7 – Perfil das tensões nas barras por unidade (pu) – ITA-03.

Já a Figura 2.8 representa a forma de onda das tensões nas barras de suprimento e de carga.

Figura 2.8 – Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra B10 a 14,5km da fonte (\Box) – (a) Fase A; (b) Fase B e (c) Fase C – ITA - 03.

2.2 - Especificação do ponto para a instalação do ARMTRS

2.2.1 - Alimentador - SLM-01C3

De modo a compensar a queda de tensão a 8,5km da fonte, um banco de capacitores série foi introduzido no sistema visando uma compensação série conforme descrito no capítulo 2 de [1].

A partir dos valores de tensão observados em cada barra, foi identificado como ponto para instalação do BCS a barra localizada a 3,6 km do ponto de suprimento, tendo em vista que nesse ponto já há um regulador de tensão como foi mostrado na Figura 2.2, e que para as condições de carregamento estabelecidas sem esse equipamento, a tensão nessa barra encontra-se em torno de 0,93 pu [2], ou seja, no limite inferior previsto para a faixa de tensão adequada descrita na Tabela 2.3.

Tabela 2.3 – Pontos de entrega ou conexão em Tensão Nominal superior a 1 kV e inferiora 69 kV, conforme Resolução ANEEL Nº 505, de 26.11.2011.

/ J 5	,
Classificação da Tensão de Atendimento	Faixa de Variação da Tensão de Leitura (TL)
(TA)	em relação à Tensão Contratada (TC)
Adequada	$0,93 \text{ TC} \le \text{TL} \le 1,05 \text{ TC}$
Precária	$0,90 \text{ TC} \le \text{TL} < 0,93 \text{ TC}$
Crítica	TL < 0,90 TC ou TL > 1,05 TC
Uma vez que o ARMTRS é composto por unidades monofásicas, deve-se considerar a instalação de equipamentos individuais em cada uma das fases do sistema trifásico, conforme mostra na Figura 2.9.

Conhecendo-se as tensões em cada ponto do sistema, verificou-se que o capacitor estaria submetido a uma tensão de 0,92 kV_{RMS} aplicada em seus terminais, e uma corrente de carga igual a 115 A_{RMS} . O valor da reatância capacitiva liquida, X_c, que o sistema necessita para elevar a tensão na barra de carga a níveis adequados é calculado pela lei de Ohm o que resulta em 8 Ω . Nessa situação, o ganho de tensão obtido na fase B (fase de referência) com a compensação série foi de 14%, possibilitando a tensão de 1,04 pu na barra da carga. Nas Figuras 2.10, 2.11 e 2.12 são mostradas a compensação série nas três fases e na Tabela 2.4 os valores obtidos de tensão em por-unidade.

Figura 2.10 – Perfil da tensão da fase A nas barras sem e com o ARMTRS em pu – SLM-01C3.

Figura 2.11 – Perfil da tensão da fase B nas barras sem e com o ARMTRS em pu – SLM-01C3.

Figura 2.12 – Perfil da tensão da fase C nas barras sem e com o ARMTRS em pu – SLM-01C3.

Tabela 2.4 – Valores da tensão nas barras de cargas antes e depois da compensação série – *SLM-01C3*.

	Tensão na Barra de Carga a 8,558km - Ramo Principal (pu)				
	Fase A	Fase B	Fase C		
Sem ARMTRS	0,90	0,90	0,89		
Com ARMTRS	1,04	1,04	1,04		

A Figura 2.13 mostra a forma de onda das tensões nas barras de suprimento e de carga.

Figura 2.13 – Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 11 a 8,5km da fonte (\Box) – SLM – 01C3 – (a)Fase A; (b) Fase B e (c) Fase C.

2.2.2 - Alimentador - ITA-03

A partir dos valores de tensão observados em cada barra, foi identificado como ponto para instalação do BCS a barra localizada a 7,5 km do ponto de suprimento, tendo em vista que para as condições de carregamento estabelecidas sem esse equipamento, a tensão nessa barra encontra-se em torno de 0,91 pu, ou seja, abaixo do limite do previsto para a faixa de tensão adequada descrita na Tabela 2.3.

Uma vez que o ARMTRS é composto por unidades monofásicas, deve-se considerar a instalação de equipamentos individuais em cada uma das fases do sistema trifásico, conforme mostra na Figura 2.14.

03.

Conhecendo-se as tensões em cada ponto do sistema, verificou-se que o capacitor estaria submetido a uma tensão de 0,89 kV_{RMS} aplicada em seus terminais, e uma corrente de carga igual a 69 A_{RMS}. O valor da reatância capacitiva líquida, X_c, que o sistema necessita para elevar a tensão na barra de carga a níveis adequados é calculado pela da lei de Ohm o que resulta em 13 Ω . Nessa situação, o ganho de tensão obtido na fase B (fase de referência) com a compensação série foi de 9% possibilitando a tensão de 1,00 pu na barra de carga. Nas Figuras 2.15, 2.16 e 2.17 são mostradas a compensação série nas três fases e na Tabela 2.5 os valores obtidos de tensão em por-unidade.

Figura 2.15 – Perfil da tensão da fase A nas barras sem e com o ARMTRS em pu – ITA-03.

Figura 2.16 – Perfil da tensão da fase B nas barras sem e com o ARMTRS em pu – ITA-03.

Figura 2.17 – Perfil da tensão da fase C nas barras sem e com o ARMTRS em pu – ITA-03.

Tabela 2.5 – Valores da tensão nas barras de cargas antes e depois da compensação série – ITA-03.

	Tensão na Barra de Carga a 14,5km - Ramo Principal (pu)			
	Fase A	Fase B	Fase C	
Sem ARMTRS	0,92	0,91	0,90	
Com ARMTRS	1,01	1,00	1,00	

A Figura 2.18 mostra a forma de onda das tensões nas barras de suprimento e de carga.

Figura 2.18 – Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra B10 a 14,5km da fonte $(\Box) - (a)$ Fase A; (b) Fase B e (c) Fase C - ITA – 03.

2.3 - Análise do desempenho do ARMTRS no sistema CELPE

2.3.1 - Análise em regime permanente

Para a análise do ARMTRS em regime permanente senoidal, considera-se o sistema teste apresentado na Figura 2.9 para o alimentador de SLM-01C3 e o sistema apresentado na Figura 2.14 para o alimentador de ITA-03, respectivamente, com variações discretas de carga, de modo a simular situações diferentes de operação. Os roteiros em ATP utilizados para o estudo dessas situações são mostrados nos Apêndices 6.5 e 6.6, respectivamente.

De modo a avaliar o comportamento do ARMTRS frente às variações de carga em regime permanente, inicialmente, considera-se um carregamento referente a 100% da corrente de carga do sistema. Esse carregamento será incrementado com a taxa de crescimento de carga médio anual para cada alimentador que é de 5,36% (SLM-01C3) e 3,4% (ITA-03). A tensão no ponto P0 (barra de 13,8 kV da subestação) será mantida em 1,0 pu para todas as situações de carga, uma vez que esta pode ser regulada por transformadores dotados de LTC (*"load tap changers"*) ou por reguladores de tensão existentes na própria subestação.

Os resultados do desempenho do ARMTRS ao longo dos anos para o alimentador de SLM-01C3 são mostrados na Tabela 2.6. Conforme esperado, o ARMTRS atua no sentido de regular a tensão na barra de carga, localizada a 8,5km do ponto de suprimento até um carregamento de 144% da corrente de carga nominal, independentemente do carregamento em que o alimentador se encontra. No entanto, para um carregamento de 111% (4º ano) será necessário acrescentar mais uma célula ao banco de capacitor série visando que este suporte as sobretensões oriunda de um defeito, e que nenhum consumidor a jusante do ARMTRS não ultrapasse a faixa de variação da tensão estabelecida pela Resolução da ANEEL.

Ano	Carregamento (%) Nominal	Corrente (A _{RMS})	Tensão após o ARMTRS (pu)	Tensão na barra fim - 8,5 km (pu)	Tensão transitória no BCS (kV)
1	100	115,0	1,05	1,04	11,4
2	105,4	121,2	1,05	1,04	11,5
3	111,0	127,7	1,05	1,04	11,6
4*	111,0	127,7	1,06	1,05	11,7
4**	117,0	134,5	1,01	1,00	11,2
5	123,2	141,7	1,01	1,00	11,2
6	129,8	149,3	1,01	1,00	11,2
7	136,8	157,3	1,01	1,00	11,2
8	144,1	165,7	1,01	1,00	11,2

Tabela 2.6 – Regulação de Tensão promovida pelo ARMTRS para diferentes situações de cargas - SLM -01C3.

* Sem alteração no BCS. ** Com alteração no BCS.

Observou-se que no ano 4, quando a carga cresce em 111% a tensão na barra após o ARMTRS ultrapassa os limites estabelecidos pela Resolução da ANEEL, apesar de a tensão no BCS não ultrapassar o limite suportável no transitório se faz necessário o acréscimo de uma célula capacitiva ao BCS sem mudar a reatância do RLS. Ou seja, esse artifício de acrescentar uma célula ao BCS sem a necessidade de mudar o tap do reator linear faz com que a reatância liquida capacitiva desse sistema seja reduzida de 8 Ω para 5 Ω sem comprometer a regulação da tensão na barra de carga mais extrema do alimentador e o desempenho do RNS.

Já para o alimentador de ITA-03, o ARMTRS também atua no sentido de regular a tensão na barra de carga, localizada a 14,5 km do ponto de suprimento como mostra a Tabela 2.7, porém, diferentemente do alimentador de SLM-01C3 não há a necessidade de acrescentar mais uma célula ao banco de capacitor série já que este não ultrapassou as sobretensões oriundas de um defeito e nem ultrapassou os limites permitidos pela Resolução ANEEL. Portanto não será necessário deslocar o ARMTRS para um ponto distante do qual ele foi instalado ao longo de 10 anos e não há a necessidade de se mudar a capacitância liquida do sistema mesmo com o crescimento da carga.

Ano	Carregamento (%) Nominal	Corrente (A _{RMS})	Tensão após o ARMTRS (pu)	Tensão na barra fim - 8,558 km (pu)	Tensão transitória no BCS (kV)
1	100	69	1,03	1,00	14,4
2	103,4	71,3	1,03	1,00	14,5
3	106,9	73,8	1,03	1,00	14,5
4	110,6	76,3	1,03	1,00	14,6
5	114,3	78,9	1,03	1,00	14,6
6	118,2	81,6	1,03	1,00	14,6
7	122,2	84,3	1,03	1,00	14,6
8	126,4	87,2	1,03	1,00	14,7
9	130,7	90,2	1,03	1,00	14,7
10	135,1	93,2	1,03	1,00	14,8

Tabela 2.7 – Regulação de Tensão promovida pelo ARMTRS para diferentes situações de cargas - ITA-01C3.

As formas de onda das tensões nos pontos P0 e nas barras de cargas ao longo dos anos para ambos alimentadores podem ser observados nas figuras do Apêndice 6.7 e 6.8.

As Figuras 2.19, 2.20 e 2.21 apresentam o perfil das tensões em regime permanente senoidal para cada uma das situações de carregamento analisadas na Tabela 2.6 para o alimentador de SLM-01C3. Uma vez que o RNS, nessas condições, está operando fora de sua região de saturação, toda a corrente de carga irá circular pelo BCS. Isto se deve ao fato de a tensão nos terminais do RNS ser insuficiente para levá-lo à saturação, de modo que ele estará funcionado como uma chave aberta.

Figura 2.19 – Perfil das tensões em regime permanente para diversos tipos de carregamento - SLM-01C3 – Fase A.

Figura 2.20 – Perfil das tensões em regime permanente para diversos tipos de carregamento - SLM-01C – Fase B.

Figura 2.21 – Perfil das tensões em regime permanente para diversos tipos de carregamento - SLM-01C3 – Fase C.

As Figuras 2.22, 2.23 e 2.24 apresentam o perfil das tensões em regime permanente senoidal para o ano 4, alimentador SLM-01C3, com e sem a alteração do BCS.

Figura 2.22 – Perfil das tensões em regime permanente para o ano 4, com e sem alteração do BCS - SLM-01C3 – Fase A.

Figura 2.23 – Perfil das tensões em regime permanente para o ano 4, com e sem alteração do BCS - SLM-01C3 – Fase B.

Figura 2.24 – Perfil das tensões em regime permanente para o ano 4, com e sem alteração do BCS - SLM-01C3 – Fase C.

As Figuras 2.25, 2.26 e 2.27 apresentam o perfil das tensões em regime permanente senoidal para o alimentador de ITA-03 para cada uma das situações de carregamento analisadas na Tabela 2.7.

Figura 2.25 – Perfil das tensões em regime permanente para diversos tipos de carregamento - Fase A – ITA-03.

Figura 2.26 – Perfil das tensões em regime permanente para diversos tipos de carregamento - Fase B – ITA-03.

Figura 2.27 – Perfil das tensões em regime permanente para diversos tipos de carregamento - Fase C – ITA-03.

2.3.2 – Análise em regime transitório

Para a análise do ARMTRS em regime transitório, foi verificado o comportamento dos sistemas elétricos apresentados no item 2.1 quando da ocorrência de um curto-circuito na barra de carga, a 8,5km para o alimentador de SLM-01C3 e a 14,5km para o alimentador de ITA-03, conforme mostra as Figuras 2.28 e 2.29. As análises em regime transitório foram realizadas considerando-se a ocorrência de curtos-circuitos monofásicos na fase A, bifásicos com terra entre as fases A e B e trifásicos. Nessas situações são apresentadas as correntes nas fases em curto-circuito e nas fases sãs, de modo a avaliar a

operação do ARMTRS frente aos distúrbios elétricos na rede de distribuição. Os defeitos foram simulados com duração de 60 ciclos, tempo típico para defeitos auto extinguidos.

Figura 2.28 – Curto circuito na barra de carga, a 8,56km da SE – SLM-01C3.

Figura 2.29 – Curto circuito na barra de carga, a 14,5km da SE – ITA-03.

2.3.2.1 - Curto-circuito monofásico

A Figura 2.30 apresenta as formas de onda das correntes de carga das fases durante um curto-circuito monofásico na fase A, para os alimentadores de SLM-01C3 e ITA-03, respectivamente.

A Figura 2.31 apresenta os histogramas em pu da corrente fundamental para as fases sãs para o alimentador de SLM-01C3. Os valores das correntes fundamentais e a distorção harmônica total (THD) são mostrados na Tabela 2.8.

Figura 2.31 – Histograma em pu da corrente fundamental devido a um curto-circuito monofásico na fase A, a 8,5km do ponto de suprimento, com o ARMTRS; (a)Fase B e (b) Fase C - SLM-01C3.

Fase B				Fase C	
Ordem	Amplitude	Fase	Ordem	Amplitude	Fase
harmônica	(A _{PU})	(Graus)	harmônica	(A _{PU})	(Graus)
1	1	-91,151	1	1	150,07
2	3,40E-05	87,21	2	6,04E-05	-14,72
3	4,88E-03	66,747	3	5,53E-03	66,015
4	4,50E-06	56,025	4	2,55E-05	-6,1479
5	2,69E-03	-6,3342	5	3,07E-03	-7,0999
THD=0,65%				THD=0,74%	

Tabela 2.8 – Corrente Fundamental e harmônico nas fases sãs devido a um curto-circuito monofásico na fase A, a 8,5km do ponto de suprimento, com ARMTRS – SLM-01C3.

A Figura 2.32 apresenta os histogramas em pu da corrente fundamental para as fases sãs para o alimentador de ITA-03. Os valores das correntes fundamentais e a distorção harmônica total (THD) são mostrados na Tabela 2.9.

MC's PlotXY - Fourier chart(s). Copying date: 07/12/2011 MC's PlotXY - Fourier chart(s). Copying date: 07/12/2011 File ITA-03_P211111_1_CC_B10.pl4 Variable c: INDB -CAP1B [|pu cFile ITA-03_P211111_1_CC_B10.pl4 Variable c: INDC -CAP1C [|pu c Initial Time: 2,183 Final Time: 2,2 Initial Time: 2,2

Figura 2.32 – Histograma em pu da corrente fundamental devido a um curto-circuito monofásico na fase A, a 14,5km do ponto de suprimento, com o ARMTRS; (a)Fase B e (b) Fase C – ITA-03.

Fase B				Fase C	
Ordem	Amplitude	Fase	Ordem	Amplitude	Fase
harmônica	(A _{PU})	(Graus)	harmônica	(A _{PU})	(Graus)
1	1	-89,457	1	1	152,01
2	3,10E-05	93,663	2	5,91E-05	-23,634
3	9,15E-03	-129,9	3	1,10E-02	-130,17
4	1,03E-05	95,953	4	2,42E-05	-2,0773
5	2,18E-03	85,532	5	2,61E-05	84,312
	THD=0,94%			THD=1,13%	

 Tabela 2.9 - Corrente Fundamental e harmônico nas fases sãs devido a um curto-circuito monofásico na fase A, a 14,5km do ponto de suprimento, com ARMTRS – ITA-03.

A Figura 2.33 mostra as formas de ondas das correntes de curto circuito durante um defeito aplicado na barra de carga a 8,5 km do ponto de suprimento sem e com ARMTRS, respectivamente, para o alimentador de SLM-01C3.

Figura 2.33 – Corrente para um curto- circuito aplicado na barra de carga a 8,5 km do ponto de suprimento (a) sem a presença do ARMTRS e (b) com a presença do ARMTRS – SLM-01C3.

Para o alimentador de SLM-01C3 a corrente de curto sem a presença do ARMTRS é na ordem de 537 A_{RMS} e com a presença do ARMTRS a corrente de curto foi reduzida para 384 A_{RMS} , ou seja, devido à presença do reator linear série, observa-se uma redução na corrente de curto-circuito na fase A de cerca de 28,5 % daquela verificada sem a presença do ARMTRS.

A Figura 2.34 mostra as formas de ondas das correntes de curto circuito durante um defeito aplicado na barra de carga a 14,5 km do ponto de suprimento sem e com ARMTRS, respectivamente, para o alimentador de ITA-03.

Figura 2.34 – Corrente para um curto- circuito aplicado na barra de carga a 14,5 km do ponto de suprimento (a) sem a presença do ARMTRS e (b) com a presença do ARMTRS – ITA-03.

Para o alimentador de ITA-03 a corrente de curto sem a presença do ARMTRS é na ordem de $397A_{RMS}$ e com a presença do ARMTRS a corrente de curto foi reduzida para $195A_{RMS}$, ou seja, devido à presença do reator linear série, observa-se uma redução na corrente de curto-circuito na fase A de cerca de 51% daquela verificada sem a presença do ARMTRS.

O reator saturado é dimensionado de modo que a elevada tensão que surge em seus terminais durante a ocorrência de um curto-circuito seja suficiente para levá-lo à condição de saturação. Nessa condição, a corrente fundamental é desviada do banco de capacitores série, passando a circular pelo reator naturalmente saturado.

A Figura 2.35 apresenta as formas de onda das correntes no BCS, no RNS e a corrente total do sistema, no instante que precedem o curto-circuito e durante sua ocorrência, para o alimentador de SLM-01C3 e ITA-03, respectivamente.

Figura 2.35 – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e (Δ) Corrente Total – (a) SLM-01C3 e (b) ITA-03.

De acordo com [3] pode ser percebido na Figura 2.35 o comportamento das correntes no ARMTRS, onde a corrente no BCS acompanha a corrente total do sistema enquanto a corrente no RNS é nula em regime permanente, passando a se opor a corrente do RNS quando esta produz o pico característico de elementos magneticamente saturados. Este pico de corrente no RNS se dá quando a tensão em seus terminais ultrapassa um valor crítico, chamado tensão de início de saturação, conforme será explicado no capítulo 3. Neste momento, a corrente no BCS que era igual à corrente total, passa a se opor a corrente no RNS e a corrente resultante desta soma é a corrente total. Pode ser observado também que a corrente resultante (total) no intervalo de tempo que o RNS está saturado é basicamente indutiva, já que a corrente no RNS é maior que a corrente no capacitor. Resumindo, em qualquer instante,

$$I_T = I_{RNS} + I_{BCS} \qquad (2.1)$$

e o restante de corrente que não vai para carga, fica oscilando entre o BCS e o RNS, pois este paralelo torna-se um circuito oscilatório.

Durante a ocorrência de um curto-circuito num sistema de potência, os equipamentos devem suportar, sem prejuízo no seu desempenho, todas as solicitações de corrente e de tensão que possam surgir até o instante em que os disjuntores atuem no sentido de isolar o trecho defeituoso no sistema. Por isso é de extrema importância analisar cuidadosamente as sobrecorrentes e sobretensões as quais estarão submetidas o BCS durante a ocorrência de um defeito.

Os valores de corrente que cada célula de capacitor pode suportar em regime transitório é mostrado na Figura 2.36 onde mostra a curva de suportabilidade garantidos pelo fabricante de capacitores (Inducon). Como norma, recomenda-se, sempre que possível, o uso de fusível individual. Se for usado fusível de grupo, deve-se evitar mais de 4 (quatro) capacitores em paralelo por grupo.

De qualquer maneira, quer seja usado fusível individual ou de grupo, será sempre desejável que, na ocasião de um eventual defeito, o tempo total de interrupção do fusível – para a corrente de defeito – seja inferior ao tempo de ruptura da caixa do capacitor defeituoso. Para tal verificação, lança-se mão das curvas máximas (tempo máximo X corrente – curva de suportabilidade) dos elos fusíveis e também das curvas de

probabilidade de ruptura de caixa do capacitor. Na zona de altas correntes (como é o caso de pequenos bancos em Δ ou em Y aterrado), para operação segura, o tipo do fusível a ser usado não deve ser mais robusto que o 25T para as unidades de 25 ou 50 kvar, nem mais robusto que 30T para unidades de 100 kvar, nem mais robusto que 80K para unidades de 200 kvar ou mais [4].

Figura 2.36 – Curva de suportabilidade das células capacitivas.

No projeto do ARMTRS para o alimentador de SLM-01C3 foram usadas quatro (4) células de capacitores de 300 kvar em paralelo com tensão nominal de 4,16 kV. Já para o projeto do alimentador de ITA-03 foram usadas seis (6) células de capacitores de 400 kVAr em paralelo com tensão nominal de 8,66 kV, conforme descrito no Anexo 7.1. A

Figura 2.37 mostra a forma de onda das correntes submetida ao BCS antes e durante um defeito, para o alimentador de SLM-01C3 e ITA-03, respectivamente.

Figura 2.37 – Forma de onda da corrente no BCS antes e durante um curto na fase A – (a)SLM-01C3 e (b) ITA-03

A corrente eficaz que circula pelo BCS em regime transitório para o alimentador de SLM-01C3 é de 493A, portanto, a corrente que passa por cada célula em regime transitório é aproximadamente igual a 123,2A, já para o alimentador de ITA-03 a corrente eficaz que circula pelo BCS em regime transitório é de 376,4A, portanto, a corrente que passa por cada célula em regime transitório é aproximadamente igual a 62,7A. Segundo a curva de suportabilidade para 200A, a célula suporta 100 segundos o que corresponde a 6000 ciclos, ou seja, tempo superior a duração típica do curto que é de 60 ciclos, para defeitos auto extinguidos ou para operação da proteção.

Em regime permanente a corrente que circula no BCS do alimentador de SLM-01C3 é de 115 A_{RMS} , portanto, a corrente que passa em cada célula capacitiva em regime permanente é aproximadamente igual a 28,75 A_{RMS} não ultrapassando a corrente nominal de funcionamento que é de 72,1 A_{RMS} , já para o alimentador de ITA-03 a corrente que circula no BCS é de 69 A_{RMS} , portanto, a corrente que passa em cada célula capacitiva em regime permanente é aproximadamente igual a 11,5 A_{RMS} também não ultrapassando a corrente nominal de funcionamento que é de 46,2 A_{RMS} .

Na ocorrência de um curto-circuito monofásico na fase A, não foram observadas sobrecorrentes no BCS nas fases sãs B e C, para ambos alimentadores, ficando a corrente nessas fases em níveis adequados, conforme mostrado na Figura 2.38.

Figura 2.38 – Forma de onda da corrente no BCS durante um curto na fase A – (a)Fase B e (b) Fase C - SLM-01C3; (c) Fase B e (d) Fase C – ITA-03.

A Figura 2.39 mostra a forma de onda da tensão aplicada nos terminas do BCS antes e durante um defeito localizado na barra de carga a 8,5km e 14,5km da fonte supridora, para ambos os alimentadores.

Figura 2.39 – Forma de onda da tensão nos terminais do BCS antes e durante um curto na fase A - (a)SLM-01C3 e (b) ITA-03.

Conforme mostraram os resultados de simulações o pico de tensão aplicado no BCS em regime transitório é aproximadamente, 11,4 e 14,1kV, para o alimentador de SLM-01C3 e ITA-03, respectivamente. E de acordo com [5] os capacitores são capazes de suportarem distúrbios transitórios de $2\sqrt{2}$ vezes a tensão nominal sem danificar a célula. Para o banco de 300kvar a tensão nominal é de 4,16kV isso implica que a célula é capaz de suportar sobretensões até 11,8kV e a para o banco de 400kvar a tensão nominal é de 8,66kV, suportando sobretensões até 24,4kV.

Já em regime permanente a tensão nos terminais do BCS do alimentador de SLM-01C3 é de 1,6kV_{RMS} não ultrapassando a tensão nominal de funcionamento que é de 4,16kV_{RMS} e para o alimentador de ITA-03 a tensão nos terminais do banco em regime permanente é de 2,1kV também não ultrapassando a tensão nominal de funcionamento que é de 8,66kV_{RMS}.

Na ocorrência de um curto-circuito monofásico na fase A, não foram observadas sobretensões nos BCS nas fases sãs B e C, de ambos alimentadores, ficando a tensão nessas fases em níveis adequados, conforme mostrado na Figura 2.40.

Figura 2.40 – Forma de onda da tensão no BCS durante um curto na fase A – (a)Fase B e (b) Fase C - SLM-01C3; (c) Fase B e (d) Fase C – ITA-03.

2.3.2.2 - Curto-circuito bifásico com terra

A Figura 2.41 apresenta a forma de onda das correntes de carga das fases durante um curto-circuito bifásico com terra entre as fases A e B, para os alimentadores de SLM-01C3 e ITA-03, respectivamente.

Figura 2.41 – *Corrente de carga durante um curto circuito bifásico com terra entre as fases A e B – Fase A* (\circ), *fase B* (\Box) *e fase C* (Δ) – (*a*)*SLM-01C3 e* (*b*) *ITA-03*.

A Figura 2.42 apresenta o histograma em pu da corrente fundamental para a fase sã para o alimentador de SLM-01C3. O valor da corrente fundamental e a distorção harmônica total (THD) são mostrados na Tabela 2.10.

Figura 2.42 – Histograma em pu da corrente fundamental para a fase C, devido a um curto-circuito bifásico entre as fases A e B, a 8,5km do ponto de suprimento, com o ARMTRS – SLM-01C3.

Ordem harmônico	Amplitude (A_{RMS})	Fase (Graus)		
1	1	150,95		
2	6,05E-05	-13,822		
3	8,47E-03	82,105		
4	2,36E-05	-7,5125		
5	1,70E-03	105,48		
THD=0,99%				

Tabela 2.10 - Corrente Fundamental e harmônico na fase sã (C) devido a um curtocircuito bifásico com terra entre as fases A e B, a 8,5km do ponto de suprimento, com ARMTRS – SLM-01C3.

A Figura 2.43 apresenta o histograma em pu da corrente fundamental para a fase sã para o alimentador de ITA-03. O valor da corrente fundamental e a distorção harmônica total (THD) são mostrados na Tabela 2.11.

Figura 2.43 – Histograma em pu da corrente fundamental para a fase C, devido a um curto-circuito bifásico entre as fases A e B, a 14,5km do ponto de suprimento, com o ARMTRS – ITA-03.

Tabela 2.11 - Corrente Fundamental e harmônico na fase sã (C) devido a um curtocircuito bifásico com terra entre as fases A e B, a 14,5km do ponto de suprimento, com ARMTRS ITA_{O3}

AKMIKS – IIA-03.					
Ordem harmônico	Amplitude (A_{RMS})	Fase (Graus)			
1	1	153,41			
2	4,31E-05	-12,816			
3	1,65E-02	-114,62			
4	1,64E-05	5,6291			
5	1,28E-03	178,64			
THD=1,6594%					

A Figura 2.44 apresenta as formas de onda das correntes no BCS, no RNS e a corrente total do sistema nas fases defeituosas, no instante que precedem o curto-circuito e durante sua ocorrência para o alimentador de SLM-01C3.

Figura 2.44 – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e (Δ) Corrente Total – (a) Fase A e (b) Fase B - SLM-01C3.

Já a Figura 2.45 apresenta as formas de onda das correntes no BCS, no RNS e a corrente total do sistema nas fases defeituosas, no instante que precedem o curto-circuito e durante sua ocorrência para o alimentador de ITA-03.

Figura 2.45 – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e (Δ) Corrente Total – (a) Fase A e (b) Fase B - ITA-03.

A Figura 2.46 mostra a forma de onda da corrente submetida ao BCS nas fases A e B antes e durante um defeito para o alimentador de SLM-01C3 e a Tabela 2.12 apresentam os valores eficazes das correntes nos BCS e em cada célula nas fases A e B durante o transitório.

Figura 2.46 – Forma de onda da corrente no BCS antes e durante um curto-circuito circuito bifásico com terra entre as fases $A \in B - (a)$ Fase $A \in (b)$ Fase B - SLM-01C3.

Tabela 2.12 – Corrente no BCS e em cada célula durante um curto bifásico com a terra entre as fases A e B – SLM-01C3.

	$I_{bcs} (A_{rms})$	i _{CÉLULA} (A _{rms})
Fase A	489	122,2
Fase B	498	124,5

Já a Figura 2.47 mostra a forma de onda da corrente submetida ao BCS nas fases A e B antes e durante um defeito para o alimentador de SLM-01C3 e a Tabela 2.13 apresentam os valores eficazes das correntes nos BCS e em cada célula nas fases A e B durante o transitório.

Figura 2.47 – Forma de onda da corrente no BCS antes e durante um curto-circuito circuito bifásico com terra entre as fases A e B - (a) Fase A e (b) Fase B - ITA-03.

	$I_{bcs} (A_{rms})$	i _{CÉLULA} (A _{rms})
Fase A	375,4	62,6
Fase B	359,9	59,9

Tabela 2.13 – Corrente no BCS e em cada célula durante um curto bifásico com a terra
entre as fases A e B - ITA-03.

Segundo a curva de suportabilidade para 200A, a célula suporta 100 segundos o que corresponde a 6000 ciclos, ou seja, tempo superior a duração do curto que é de 60 ciclos para ambos alimentadores.

Na ocorrência de um curto-circuito bifásico com terra entre as fases A e B não foram observadas sobrecorrente no BCS na fase sã para ambos alimentadores, ficando a corrente nessa fase em níveis adequados, conforme mostrado na Figura 2.48, para os alimentadores de SLM-01C3 e ITA-03, respectivamente.

Figura 2.48 – Forma de onda da corrente no BCS na fase C durante um curto bifásico com terra entre as fases A e B - (a) SLM-01C3 e (b) ITA-03.

A Figura 2.49 mostra a forma de onda da tensão aplicada nos terminas do BCS nas fases A e B antes e durante um curto-circuito bifásico com terra localizado na barra de carga a 8,5km da fonte supridora para o alimentador de SLM-01C3.

Figura 2.49 – Forma de onda da tensão nos terminais do BCS antes e durante um curtocircuito bifásico com terra – (a) Fase A e (b) Fase B - SLM-01C3.

Conforme mostraram os resultados de simulações, para o alimentador de SLM-01C3, o pico máximo de tensão aplicado no BCS em regime transitório é de aproximadamente igual a 10,7kV e 11,7kV nas fases A e B, respectivamente.

A Figura 2.50 mostra a forma de onda da tensão aplicada nos terminas do BCS nas fases A e B antes e durante um curto-circuito bifásico com terra localizado na barra de carga a 14,5km da fonte supridora para o alimentador de ITA-03.

Figura 2.50 – Forma de onda da tensão nos terminais do BCS antes e durante um curtocircuito bifásico com terra – (a) Fase A e (b) Fase b - ITA-03.

Conforme mostraram os resultados de simulações, para o alimentador de ITA-03, o pico de tensão aplicado no BCS em regime transitório é aproximadamente 13,5kV e 15,1kV nas fases A e B, respectivamente.

Na ocorrência de um curto-circuito bifásico com terra, não foram observadas sobretensão nos BCS na fase sã C, de ambos alimentadores, ficando a tensão nessa fase em níveis adequados, conforme mostrado na Figura 2.51.

Figura 2.51 – Forma de onda da tensão no BCS na fase C durante um curto-circuito bifásico com terra – (a) SLM-01C3 e (b) ITA-03.

2.3.2.3 - Curto-circuito trifásico

A Figura 2.52 apresenta a forma de onda das correntes de carga das fases durante um curto-circuito trifásico, para o alimentador de SLM-01C3 3 ITA-03, respectivamente.

Figura 2.52 – *Corrente de carga durante um curto circuito trifásico* – *Fase A* (\circ), *fase B* (\Box) *e fase C* (Δ) – (*a*) *SLM-01C3 e* (*b*) *ITA-03*.

A Figura 2.53 apresenta as formas de onda das correntes no BCS, no RNS e a corrente total do sistema nas três fases, no instante que precedem o curto-circuito e durante sua ocorrência para o alimentador de SLM-01C3.

Figura 2.53 – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e (Δ) Corrente Total – (a) Fase A, (b) Fase B e (c) Fase C - SLM-01C3.

A Figura 2.54 apresenta as formas de onda das correntes no BCS, no RNS e a corrente total do sistema nas três fases, no instante que precedem o curto-circuito e durante sua ocorrência para o alimentador de ITA-03.

Figura 2.54 – Forma de onda das correntes: (\circ) Corrente no RNS, (\Box) Corrente no BCS e (Δ) Corrente Total – (a) Fase A, (b) Fase B e (c) Fase C - ITA-03.

A Figura 2.55 mostra a forma de onda da corrente submetida ao BCS nas três fases antes e durante um defeito para o alimentador de SLM-01C3 e a Tabela 2.14 apresenta os valores eficazes das correntes nos BCS e em cada célula nas três fases durante o transitório.

Figura 2.55 – Forma de onda da corrente no BCS antes e durante um curto-circuito circuito trifásico – (a) Fase A, (b) Fase B e (c) Fase C - SLM-01C3.

Tabela 2.14 – Corrente no BCS e em cada célula durante um curto trifásico nas três fases – SLM-01C3.

	$I_{bcs} (A_{rms})$	$i_{C\acute{E}LULA}$ (A_{rms})
Fase A	519	130
Fase B	455	114
Fase C	452	113

A Figura 2.56 mostra a forma de onda da corrente submetida ao BCS nas três fases antes e durante um defeito para o alimentador de ITA-03 e a Tabela 2.15 apresenta os valores eficazes das correntes nos BCS e em cada célula nas três fases durante o transitório.

Figura 2.56 – Forma de onda da corrente no BCS antes e durante um curto-circuito circuito trifásico – (a) Fase A, (b) Fase B, (c) Fase C - ITA-03.

Tabela 2.15 – Corrente no BCS e em cada célula durante um curto trifásico nas três fases – ITA-03.

	$I_{bcs} (A_{rms})$	$i_{C\acute{E}LULA}$ (A_{rms})
Fase A	379,5	63,2
Fase B	352,6	58,8
Fase C	352,9	58,8

Segundo a curva de suportabilidade para 200A, a célula suporta 100 segundos o que corresponde a 6000 ciclos, ou seja, ou seja, tempo superior a duração do curto que é de 60 ciclos para ambos alimentadores.

A Figura 2.57 mostra a forma de onda da tensão aplicada nos terminas do BCS nas três fases antes e durante um curto-circuito trifásico localizado na barra de carga a 8,5km da fonte supridora para o alimentador de SLM-01C3.

Figura 2.57 – Forma de onda da tensão nos terminais do BCS antes e durante um curtocircuito trifásico – (a) Fase a, (b) Fase B e (c) Fase C - SLM-01C3.

Conforme mostraram os resultados de simulações o pico máximo de tensão aplicado no BCS em regime transitório para o alimentador de SLM-01C3 é aproximadamente 11,7kV, 11,3kV e 11,3kV nas fases A, B e C, respectivamente.

A Figura 2.58 mostra a forma de onda da tensão aplicada nos terminas do BCS nas três fases antes e durante um curto-circuito trifásico localizado na barra de carga a 14,5km da fonte supridora para o alimentador de ITA-03.

Figura 2.58 – Forma de onda da tensão nos terminais do BCS antes e durante um curtocircuito trifásico – (a) Fase A, (b) Fase B e (c) Fase C - ITA-03.

Conforme mostraram os resultados de simulações o pico máximo de tensão aplicado no BCS em regime transitório para o alimentador de ITA-03 é aproximadamente 14,7kV, 13,9kV e 13,9kV nas fases A, B e C, respectivamente.

A Tabela 2.16 mostra a freqüência da ocorrência para cada tipo de curto circuito em sistema elétricos de distribuição, onde se pode observar que os curtos bifásicos e trifásicos se apresentam menos freqüentes que os curtos monofásicos.

Tipo de curto circuito	Ocorrências	Permanentes	Transitórios
Trifásico	2%	95%	5%
Bifásico	11%	70%	30%
Fase/Terra	79%	20%	80%
Outros	8%	-	-

Tabela 2.16 – *Composição probabilística entre o tipo das faltas e sua duração.*

Fonte: GIGUER, S. 1988, p.33.

2.3.3 - Controle do afundamento de tensão

Além de exercer a função de limitador de corrente de curto-circuito o reator linear em série com o banco de capacitores foi utilizado no ARMTRS também com o objetivo de permitir o suprimento das cargas a montante do equipamento durante um curto-circuito, até que o defeito seja auto-extinguido ou eliminado pela proteção. Pode-se considerar o controle de afundamento e elevação de tensão, durante um defeito, promovido pelo reator linear série como um benefício adicional oferecido pelo ARMTRS ao sistema como podem ser observados na Figura 2.59 e na Tabela 2.17 para o alimentador de SLM-01C3.

Figura 2.59 – Perfil de tensão para cargas conectadas a montante do ARMTRS durante um curto-circuito a jusante na fase A – SLM-01C3.

Barra	Fase A		Fase B		Fase C	
	V _{pu}		V _{pu}		V _{pu}	
	Sem	Com	Sem	Com	Sem	Com
	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS
1	0,93	1,00	1,00	1,00	1,00	1,00
2	0,89	0,99	1,01	1,00	1,00	0,99
3	0,89	0,99	1,01	1,01	1,00	0,99
4	0,82	0,97	1,03	1,01	0,99	0,97
5	0,72	0,95	1,06	1,01	0,98	0,94
6	0,63	0,90	1,03	1,00	0,94	0,92

 Tabela 2.17 – Tensão em pu a montante do ARMTRS durante um curto-circuito monofásico na fase A a jusante do ARMTRS – SLM-01C3.

Para o alimentado de ITA-03, diferentemente do de SLM-01C3, inicialmente, observou-se com os resultados de simulação que durante um defeito a tensão em alguns trechos a montante do ARMTRS afundava mesmo com a presença desse equipamento, como pode ser visto nas Figuras 2.60 e na Tabela 2.18.

Figura 2.60 – Perfil de tensão para cargas conectadas a montante do ARMTRS durante um curto-circuito monofásico na fase A a jusante do ARMTRS – ITA-03 (Projeto sem ajuste).

Tabela 2.18 – Tensão em pu a montante do ARMTRS durante um curto-circuito monofásico na fase A a jusante do ARMTRS – ITA-03 (Projeto sem ajuste).

Barra	Fas	e A	Fas	e B	Fase C		
	V	pu	V	pu	$\mathbf{V}_{\mathbf{pu}}$		
	Sem Com		Sem	Com	Sem	Com	
	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS	
1	0,92	0,98	1,00	1,00	1,00	1,00	
2	0,86	0,94	1,00	1,00	0,99	0,98	
3	0,84	0,93	1,00	1,00	0,99	0,97	
4	0,74	0,87	1,01	1,00	0,97	0,94	
5	0,59	0,79	1,03	1,01	0,94	0,89	
6	0,48	0,73	1,06	1,03	0,94	0,86	

A alternativa encontrada para controlar esses afundamentos foi reduzir a corrente de curto circuito do sistema. Para que isso fosse possível, fez-se necessário aumentar a reatância do RLS o que refletiu no peso da estrutura ferromagnética, como será visto no capítulo 3, tornado-a mais robusta e pesada. Outro fator que deve ser levado em consideração é a capacitância liquida que o sistema precisa para regular a tensão na barra de carga mais distante, ou seja, o reator linear deve ser projetado de forma tal que seja possível uma combinação de células capacitivas com as células padrões normalmente usadas. O projeto do RNS e RLS foi ajustado de forma a atender todos os benefícios proposto pelo ARMTRS, inicialmente propôs que a arquitetura adotada seria aquela mostrada na Figura 1.1, com essas modificações todo o RLS passou a ser usado para diminuir a corrente de curto-circuito, ou seja, a arquitetura agora adotada é mostrada na Figura 2.61.

Figura 2.61 – Arquitetura do ARMTRS para o alimentador de ITA-03.

Com essa arquitetura a tensão nos terminais do RNS passa a ser a tensão aplicada ao BCS, ou seja, é maior do que a tensão da arquitetura mostrada na Figura 1.1, que antes era a queda de tensão entre o BCS e parte do RLS. Essa mudança influencia na tensão de saturação do RNS que passa a ser maior, e quando a tensão de saturação do RNS aumenta, a tensão nos terminais do BCS também aumenta. Durante um defeito foram observadas picos de tensões transitória nos terminais do BCS entre 14 e 15kV, as células de 200 e 300kVAr com tensão nominal de 4,16kV não suportam essas sobretensões, a alternativa encontrada foi usar as células de 400kvar com tensão nominal de 8,66kV que suportam sobretensões de até 24,4kV. A reatância nominal dessa célula é de 187,4Ω tornando-se necessário 5 (cinco) células em paralelo, se por ventura uma célula vier a ser danificada sobrecarregaria o banco, e por isso em vez de 5 (cinco) células foram usadas 6 (seis) células o que resulta numa reatância de 31,25 Ω e para manter a capacitância liquida do sistema que é de aproximadamente 13Ω o RLS foi projetado com uma reatância de 19Ω , ou seja, para reatâncias do RLS acima desse valor seria necessário diminuir a reatância do BCS e com isso usar menos células, no entanto, para esse projeto o número mínimo de células para se manter dentro dos limites assegurados pelas normas seria de 5 (cinco) células capacitivas.

A Figura 2.62 e a Tabela 2.19 mostram o perfil da tensão a montante do ARMTRS durante um defeito a jusante para a fase defeituosa.

Figura 2.62 – Perfil de tensão para cargas conectadas a montante do ARMTRS durante um curto-circuito a jusante na fase A – ITA-03.

Tabela 2.19 – Tensão em pu a montante do ARMTRS durante um curto-circuit	to
monofásico na fase A a jusante do ARMTRS – ITA-03.	

Barra	Fas	se A	Fas	se B	Fase C V _{pu}		
	V	, ри	V	pu			
	Sem Com		Sem	Com	Sem Com		
	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS	ARMTRS	
1	0,92	1,00	1,00	1,00	1,00	1,00	
2	0,86	0,98	1,00	0,99	0,99	0,98	
3	0,84	0,97	1,00	0,99	0,99	0,98	
4	0,74	0,94	1,01	0,99	0,97	0,95	
5	0,59	0,90	1,03	0,98	0,94	0,90	
6	0,48	0,86	1,06	0,98	0,94	0,87	

2.3.4 - Análise do ARMTRS após a remoção do defeito

Foram feitas simulações com o sistema em regime normal de operação, com o sistema sob a influência de um curto circuito e com a retirada desse defeito. É importante analisar o instante em que o defeito se extingue para avaliar o tempo de reação do RNS em sair do seu estado de saturação. Observou-se nas simulações que depois da retirada do defeito o RNS não sai de seu estado de saturação, devido à troca de energia entre o BCS e o RNS.

A Figura 2.63 mostram a forma de onda da corrente no reator saturado para o alimentador de SLM-01C3 e ITA-03, respectivamente, no instante que precede o defeito, durante o defeito e logo após esse defeito ser extinguido.

Figura 2.63 – Forma de onda da corrente no reator saturado, antes, durante e depois um defeito – (a) SLM-01C3 e (b) ITA-03.

Visando dissipar a energia armazenada entre o BCS e o RNS durante a ocorrência de curtos-circuitos, uma resistência de amortecimento foi instalada em série com o reator saturado, conforme mostrado na Figura 2.64 para o alimentador de SLM-01C3 e ITA-03.

Figura 2.64 – Arquitetura do ARMTRS com resistência de amortecimento – (a) SLM-01C3 e (b) ITA-03.

Para analisar os efeitos e o valor necessário em ohms da resistência de amortecimento na dessaturação do RNS, o ARMTRS foi posto em uma barra infinita. Verificou-se que seria necessária uma resistência de 10 ohms para que o RNS saísse de saturação depois da retirada do curto-circuito para o alimentador de SLM-01C3 e uma de 20 ohms para ao alimentador de ITA-03.

A Figura 2.65 mostra a forma de onda da corrente no RNS durante um curtocircuito, com a presença da resistência de amortecimento para ambos alimentadores. Podese observar que com a introdução dessa resistência de amortecimento o reator saturado sai de saturação em poucos ciclos quando o defeito é removido sem o desligamento da fonte, comprovando a eficiência da sua utilização.

Figura 2.65 – Forma de onda da corrente no RNS antes, durante e depois um defeito com resistência de amortecimento – (a) SLM-01C3 e (b) ITA-03

Além de acrescentar em série com o reator naturalmente saturado uma resistência de amortecimento também foram feitas outras análises para o ARMTRS com arquiteturas distinta daquela proposta na Figura 2.64 (a) para o alimentador de SLM-01C3, para o alimentador de ITA-03 foi mantido a arquitetura proposta na Figura 2.64 (b).

A Figura 2.66 mostra as outras arquiteturas estudadas. A arquitetura denominada de ARMTRS-B consiste em dois reatores saturados, um em shunt com o BCS e outro shunt com o conjunto BCS e RLS. A arquitetura denominada de ARMTRS-C consiste em um único reator saturado, porém com a presença de um tap em que parte do reator saturado é ligada em shunt com o RLS e a outra parte em shunt com o conjunto BCS e RLS. A arquitetura denominada de ARMTRS-D consiste em dois reatores saturados, um em shunt com o RLS e outro em shunt com BCS. E por último a arquitetura denominada de ARMTRS-E a qual é composta por dois reatores saturados ambos em série e em shunt com o conjunto BCS e RLS, a diferença dessa arquitetura para as demais é a presença de um *Resistor Damping* em paralelo com um dos RNS [6].

Figura 2.66 – (a) Arquitetura ARMTRS - B; (b) Arquitetura ARMTRS - C; (c) Arquitetura ARMTRS - C; (c) Arquitetura ARMTRS - D;

A Tabela 2.20 mostra os resultados obtidos para todas as arquiteturas estudadas. Observou-se que para todas as arquiteturas a resistência de amortecimento se faz necessária. Levando em consideração o tempo em que o RNS sai de seu estado de saturação depois da remoção de um defeito e o peso da estrutura, chegou-se a conclusão que a arquitetura ARMTRS-A proposta desde o inicio é a melhor arquitetura a ser adotada.

	R_a (Ω)	Ciclos - Duração do defeito	Ciclos - Amortecimento	V _{BCS_Trans} (kV _{PICO)}	Peso – ARMTRS (kg/fase)	
ARMTRS - A	10	60	3	11,4	436,7	
ARMTRS - B	10	60	3	9,2	733,6	
ARMTRS - C	10	60	1	18,6	550,9	
ARMTRS - D	10	60	4	10,8	493,7	
ARMTRS - E	10	60	1	12,4	549	

Tabela 2.20 – *Resultados obtidos para os cincos tipos de arquitetura do ARMTRS.*

No Apêndice 6.9 são mostradas as figuras de onda da tensão no BCS e a corrente no RNS para todas as arquiteturas estudadas.

2.3.5 - Análise do RLS durante um defeito

Conforme observados nas simulações, durante a ocorrência do curto circuito, o reator linear série do alimentador de SLM-01C3 que é constituído pela arquitetura mostrado na Figura 2.64 (a) sofre variações brusca de tensão (*spikes*) como pode ser verificado na Figura 2.67, chegando a picos de tensão de aproximadamente 55kV.

Figura 2.67 – Forma de onda da tensão no reator linear durante um defeito – SLM-01C3.

Esse fenômeno ocorre, pois em qualquer instante a queda de tensão no indutor é proporcional à razão de variação da corrente com relação ao tempo, então quanto mais rapidamente variar a corrente numa dada variação de tempo, maior será a tensão nos terminais do indutor como mostra a expressão 2.2.

$$v = L \frac{di}{dt} \qquad (2.2)$$

Ou seja, a corrente que circula através de um indutor não pode ter seu valor alterado de uma quantidade finita, instantaneamente, pois isso implicará em uma tensão infinita neste instante. Como foi mostrado na Figura 2.64 (a) parte do reator linear está conectado em paralelo com o reator naturalmente saturado que durante um curto circuito ora está em seu estado de saturação, no intervalo $\omega t=2\alpha$, sendo a corrente limitada pela indutância de saturação, como pode ser visto na Figura 2.68, e ora está no seu estado de não saturação, no intervalo (π -2 α) sendo a corrente nesse intervalo nula conforme descrito em [7].

Figura 2.68 – Comportamento do reator naturalmente saturado com tensão senoidal aplicado aos seus terminais.

A Figura 2.69 mostra o comportamento da tensão sobre o reator linear e da corrente do reator naturalmente saturado durante um defeito. A corrente do RNS foi aumentada em 20 vezes para melhor visualização.

Figura 2.69 – Forma de onda da tensão no RLS (\circ) e da corrente no RNS (\Box) durante um *defeito* – SLM-01C3.

No alimentador de ITA-03 essas variações bruscas de tensão não foram observadas, devido à arquitetura desse sistema, como mostrado na Figura 2.64 (b). A Figura 2.70 mostra a forma de onda do reator linear durante um defeito.

Figura 2.70 – Forma de onda da tensão no RLS durante um defeito – ITA-03.

CAPITULO 3

DIMENSIONAMENTO DO ARMTRS -13,8kV - CABEÇA DE SÉRIE

3.1 – Considerações preliminares

Dos três componentes do ARMTRS mostrados na Figura 1.1, o BCS não deverá ser alvo de considerações especiais, pois, células capacitivas são ofertadas comercialmente por várias empresas do setor industrial brasileiro e a CELPE é uma usuária habitual desses produtos para a compensação em derivação das linhas e cargas.

Os procedimentos de cálculos usados para a construção dos componentes do ARMTRS mostrado neste trabalho terá como base o alimentador de SLM-01C3, tendo em vista que a rotina de cálculo é a mesma para qualquer que seja o alimentador.

O RLS foi decomposto em duas partes como mostra a Figura 3.1, uma parte do reator linear (X_{Ferro}) é conectado em série com BCS e esse conjunto ligado em shunt com o reator saturado. A outra parte do RLS (X_{Ar}) exerce a função de limitador de corrente de curto-circuito. Essa bifurcação do RLS foi adotada com intuito de se ter apenas uma parcela do reator linear para limitar a corrente de curto-circuito e não todo o RLS exercendo essa função. Uma característica dessa arquitetura é que a parcela do RLS em série com o BCS diminui a tensão nos terminais do RNS e com isso o reator saturado pode ser dimensionado com tensão de saturação mais baixa refletindo no peso da estrutura magnética, porém, essa divisão vai depender das necessidades do sistema elétrico a ser instalado o ARMTRS.

Figura 3.1 – Decomposição do RLS na Arquitetura do ARMTRS para o alimentador de *SLM-01C3*.

A parte do reator linear destinada a limitar a corrente de curto-circuito será dimensionada como um núcleo de ar, enquanto a outra parcela do reator linear em shunt com RNS será dimensionado como uma estrutura ferromagnética.

O reator linear série constitui num produto adquirido regularmente pelas empresas do setor elétrico tanto para a função de compensação das linhas de transmissão, como para o papel de limitação da corrente de curto-circuito. Os reatores com essas finalidades são fabricados com duas versões distintas:

- Reatores com núcleo de material ferromagnético;
- Reatores com núcleo de ar.

Nas aplicações para compensação, o RLS é conectado em derivação nos terminais das linhas de alta e extra-alta tensão, possuem potências elevadas e são construídos aos moldes dos transformadores. Porém, ao contrário desses equipamentos, os reatores exibem um núcleo de material ferromagnético com entreferros para garantir a relação linear entre a tensão e a corrente solicitada pelos mesmos. Um leiaute típico da parte ativa de um reator linear com essa conformação é apresentado na Figura 3.2 e, em geral, esse conjunto é imerso em óleo isolante num tanque metálico dispondo de elementos para dissipação do calor gerado.

Figura 3.2 – Esquemático do RLS com núcleo de ferro.

Nas aplicações para limitação das correntes de curto-circuito, os reatores lineares são conectados em série na rede elétrica, tal como na arquitetura proposta na Figura 3.1 para o ARMTRS. A opção construtiva habitualmente utilizada com essa finalidade faz uso de uma estrutura com núcleo de ar, como ilustra a Figura 3.3 para um reator de alta-tensão.

Figura 3.3 – Reator Linear Série com núcleo de ar aplicado em alta-tensão.

O RNS é, dentre os equipamentos constituintes do ARMTRS, o único que não faz parte do portfólio das empresas fornecedoras do setor elétrico nacional, de sorte que, sob esse aspecto, não existe uma tecnologia devidamente estabelecida e comprovada para produção do mesmo. Trata-se, pois, de um campo da ciência livre para as especulações e as universidades brasileiras, dentre as quais a UFPE, têm investido em pesquisas nessa matéria sob os auspícios das concessionárias de energia elétrica. É relevante registrar que num passado recente, a GEC, empresa criadora do RNS, fabricou muitas unidades desse dispositivo, algumas das quais destinadas a limitadores da corrente de curto-circuito como o ARMTRS, todavia a tecnologia dos mesmos jamais foi revelada por completo.

As investigações desenvolvidas na UFPE mostram que a tecnologia empregada para a fabricação de transformadores presta-se perfeitamente para os RNS's, desde que ajustadas para satisfazer as peculiaridades desse último. É comum nos transformadores trifásicos o uso de estruturas eletromagnéticas em monobloco para constituição do núcleo, sendo as configurações mostradas na Figura 3.4 as mais notáveis.

Figura 3.4 – Estruturas eletromagnéticas em monoblocos.

Tais estruturas são adequadas quando as três fases do dispositivo operam em condições equilibradas de carga, como ocorre nos transformadores. No ARMTRS, todavia, o RNS poderá ser solicitado a funcionar em regime de muita assimetria, como nos curtoscircuitos monofásicos e, nessas circunstâncias, a grande intensidade de fluxo produzido na fase defeituosa atingirá toda a estrutura magnética, levando a mesma ao regime de intensa saturação. Os reatores lineares das três fases serão, nesse caso, acionados para proceder a mitigação não apenas da corrente de falha, mas também da corrente de carga das fases sâs, o que caracteriza um funcionamento impróprio. Para evitar esse comportamento numa estrutura em monobloco, o jugo da mesma deverá ser dimensionado para funcionar fora do regime de saturação sob qualquer regime operativo, o que exigirá o emprego de uma secção exagerada de ferro. Essa particularidade do ARMTRS recomenda o uso de estruturas individuais para cada fase, cujas opções são apresentadas na Figura 3.5.

Figura 3.5 – Estruturas eletromagnéticas individuais por fase.

No que tange à tecnologia dos materiais, o RNS poderá ser construído com qualquer tipo de aço, uma vez que em regime normal de operação o mesmo opera abaixo da indução de saturação e, portanto, as perdas nesse elemento se tornam de pequena monta. As considerações expostas anteriormente apontam as dimensões e o peso do ARMTRS como elementos restritivos para a aplicação desse dispositivo nos moldes propostos, qual seja, instalados no alto de postes em plena via pública. Sob esse enfoque, a conjugação do RNS e de parte do RLS numa estrutura eletromagnética única parece, numa análise expedita, uma proposta atraente, pois se espera, nesse caso, uma redução dos parâmetros de interesse.

As investigações conduzidas no âmbito do LDSP com esse propósito indicaram as estruturas da Figura 3.6 como as mais promissoras. Nesse arranjo, a coluna central funciona como jugo comum tanto para o RNS como para o RLS, o que deverá, certamente, redundar numa estrutura com peso e dimensões inferiores àqueles da opção individual para cada um desses componentes.

Figura 3.6 – (a) Modelo ferromagnético da Estrutura Assimétrica e (b) Modelo ferromagnético da Estrutura Simétrica.

A Estrutura Assimétrica conforme mostra a Figura 3.6 (a) é composta de uma bobina de núcleo saturado (RNS), uma bobina linear (RLS) e um retorno de forma que a bobina de núcleo linear esteja entre a bobina de núcleo saturado e o retorno.

Já a Estrutura Simétrica conforme mostra a Figura 3.6 (b) também é composta de uma bobina de núcleo saturado (RNS), uma bobina linear (RLS) e um retorno de forma que o retorno esteja entre a bobina de núcleo saturado e a bobina de núcleo linear.

É preciso ressaltar que em ambas as estruturas há a necessidade de a bobina linear está o mais próximo possível do retorno para que o fluxo gerado por ela circulasse pelo retorno e não pela bobina de núcleo saturado. Caso contrário, o fluxo da bobina linear iria contribuir para que a bobina de núcleo saturado entrasse em saturação mais rapidamente.

3.2 – Rotina de cálculo

Para a modelagem do ARMTRS deve-se proceder da seguinte forma:

- Determinar o ponto a ser alocado o ARMTRS. Deve-se escolher um ponto onde a tensão esteja abaixo dos níveis considerados adequados pela Resolução da ANEEL mostrado na Tabela 2.3;
- Determinar o quanto de capacitância liquida o sistema necessita para que a tensão se eleve a aproximadamente 1,0 pu na barra de carga mais distante do alimentador sem exceder 1,05 pu em nenhum outro trecho;
- Determinar o valor da reatância capacitiva e da reatância indutiva do reator linear para que se tenha a capacitância liquida necessária conforme foi definido no passo anterior.
- Dimensionar o reator saturado de modo que a tensão de saturação seja maior que a queda de tensão nos seus terminais em regime permanente.
- Depois de escolhido a reatância do reator linear, deve-se determinar a parcela necessária de reatância indutiva (ver Figura 3.1) para limitar a corrente de curtocircuito;
- Certificar-se que as características nominais do BCS em regime permanente não sejam violadas; já em regime transitório deve-se proceder de acordo com as normas e/ou seguir as recomendações dos fabricantes para que os BCS suportem as sobretensões e sobrecorrentes. Deve-se sempre optar pela segurança do sistema usando mais células capacitivas do que o número mínimo necessário, assim se alguma célula vier a se danificar, poderá ser trocada sem sobrecarregar o BCS;
- Certifica-se que todas as funções do ARMTRS forma atendidas: regulação de tensão, limitação da corrente de curto-circuito, controle do afundamento e elevação da tensão.

Os parâmetros desse alimentador, SLM - 01C3, para o dimensionamento dos componentes do ARMTRS estão mostrados na Tabela 3.1.

Tabela 3.1 – Alimentador – SLM - 01C3.						
$S_{cc3\phi}(MVA)$	131,4					
I _{Carga} (A _{RMS})	115,0					
$\mathbf{I}_{ ext{curto na barra fim}}\left(\mathbf{A}_{ ext{RMS}} ight)$	537,0					
Tensão no ponto de instalação do ARMTRS (pu)	0,92					
Tensão na barra fim (pu)	0,90					
$\mathbf{X}_{\operatorname{cap}, \mathrm{L}\mathrm{i}\mathrm{quida}}\left(\mathbf{\Omega} ight)$	8,0					
$X_{RLS}(\Omega)$	3,5					
$\mathbf{X}_{\mathrm{AR}}\left(\mathbf{\Omega} ight)$	3,0					
$X_{BCS}(\Omega)$	14,4					
Taxa de crescimento anual da carga (%)	5,36					

SIM 01C2

3.3 - Curva de magnetização

Na construção das estruturas ferromagnética do protótipo industrial ARMTRS será usada chapas de aço silicioso M125-27-E-004 grão orientado de 0,27 mm de espessura, cuja curva de magnetização (B x H) desse aço é apresentada na Tabela 3.2 e na Figura 3.7.

B (T)	H(A.m/e)	B (T)	H(A.m/e)
0,40	11,937	1,66	103,451
0,50	13,608	1,68	119,366
0,60	15,358	1,7	147,218
0,70	17,109	1,71	163,134
0,80	18,701	1,72	179,049
0,90	20,292	1,73	202,923
1,00	21,168	1,74	226,796
1,05	21,884	1,75	259,423
1,10	22,839	1,76	282,5
1,15	23,635	1,77	334,225
1,20	24,987	1,78	377,993
1,25	26,42	1,79	445,634
1,30	28,17	1,8	501,338
1,35	30,637	1,81	612,747
1,40	33,025	1,82	700,282
1,45	37,242	1,83	835,564
1,50	42,972	1,84	954,93
1,52	45,757	1,85	1114,085
1,54	48,94	1,86	1193,662
1,56	53,317	1,87	1392,606
1,58	58,887	1,88	1591,549
1,60	66,049	1,92	2500
1,62	76,394	1,96	5000
1,64	85,944	1,97	10000

Tabela 3.2 – Curva de magnetização com 48 ponto.

Figura 3.7 – Curva de Magnetização (BxH) do aço M125-27-E004.

3.4 - Dimensionamento do Reator Naturalmente Saturado - RNS

Segundo [8] o circuito apresentado na Figura 3.8 composto por um único indutor recebendo alimentação de uma fonte de tensão senoidal desprezando-se a resistência ôhmica do enrolamento e considerando-se uma característica de magnetização idealizada para o mesmo, tal qual aquela da Figura 3.9, o funcionamento desse circuito será orientado pela seguinte regra:

- Enquanto a tensão da fonte não ultrapassar o valor estabelecido para a saturação do núcleo, nenhuma corrente fluirá no circuito;
- Quando, por outro lado, a saturação for alcançada, a reposta do circuito será aquela de uma indutância pura, L_m, como determina a sua característica de magnetização.

Figura 3.8 – Circuito com um único núcleo.

Figura 3.9 – Característica de magnetização.

Para o dimensionamento do RNS inicialmente estimou-se a área efetiva de ferro necessária em mm², a indução inicial de saturação em Tesla (T) e a tensão de saturação em V_{RMS} .

Para onda senoidais, o fluxo magnético é dado por

$$\phi = \phi_{m \acute{a}x} \cdot \sin \omega t \tag{3.1}$$

E de acordo com a Lei de Faraday, tem-se que

$$e = -N\frac{d\phi}{dt} \tag{3.2}$$

Substituindo a expressão 3.1 na expressão 3.2, resulta em

$$e = -N\omega\phi_{m\acute{a}x}\cos\omega t \qquad (3.3)$$

Onde,

$$\omega = 2\pi f \qquad (3.4)$$

Substituindo 3.4 em 3.3, tem-se

$$e = -2\pi f N \phi_{max} \cos \omega t \qquad (3.5)$$

O valor em RMS para expressão 3.5 é dado por

$$E_p = \frac{2\pi f}{\sqrt{2}} N \phi_{max} \cos \omega t \qquad (3.6)$$

De acordo com a lei de Gauss, a densidade de fluxo magnético é uniforme em uma seção reta de um circuito magnético e dada pela seguinte expressão:

$$\phi = B \cdot A \qquad (3.7)$$

Substituindo 3.7 em 3.6, tem-se que

$$E_p = 4,44fNBA\cos\omega t \qquad (3.8)$$

Onde o número de espira é determinado por

$$N = \frac{V_{RMS}}{4,44 \cdot BfA} \tag{3.9}$$

Conforme [9] a seção geométrica do núcleo do RNS foi estimada da seguinte forma:

$$A_{g_{RNS}} = 9000 \ mm^2 \quad (3.10)$$

Porém, está seção não representa a seção verdadeira de ferro, ou seja, a seção magnética, pois entre uma lâmina e outra existe uma espessura de material isolante. Assim sendo, a seção magnética é obtida multiplicando a seção geométrica pelo fator de empilhamento (f_e). Logo, a seção magnética é dada por:

$$A_{m_{RNS}} = 9000 \cdot 0,96 = 8640 \ mm^2 \quad (3.11)$$

No dimensionamento do núcleo do RNS em relação ao número de steps [10] foram usado 4 (quatro) steps, ou seja, o núcleo representa uma seção circular com diâmetro de aproximadamente 114 mm conforme pode ser visto na Figura 3.10.

Figura 3.10 – Seção transversal do núcleo do RNS com quatro step.

O diâmetro é determinado a partir da seção geométrica do núcleo e do fator de utilização do ferro (f_{uf}), ver Tabela 3.3, a fração de área do circulo ocupada pelo ferro é dada por

$$A_{g_{RNS}} = f_{uf} \cdot A_{c_{RNS}} \quad (3.12)$$

Onde,

$$A_{c_{RNS}} = \frac{9000}{0,886} = 10158,01 \, mm^2$$
 (3.13)

Logo, o diâmetro é dado por

$$D_{RNS} = \sqrt{\frac{4 \cdot A_{c_{RNS}}}{\pi}} \qquad (3.14)$$

O que resulta em

$$D_{RNS} = \sqrt{\frac{4 \cdot 10158,01}{\pi}} = 113,72 \ mm \qquad (3.15)$$

	Fatores de Forma para Seção Circular											
			Normalização X Coordenadas									
Nº	Fração da área	1	2	3	4	5	6	7	8	9	10	
Steps	Circulo Ocupada											
	pelo Ferro											
1	0,6366	0,7071										
2	0,7869	0,5257	0,851									
3	0,851	0,424	0,707	0,91								
4	0,886	0,3591	0,606	0,8	0,93							
5	0,9079	0,3138	0,534	0,71	0,85	0,95						
6	0,9228	0,2802	0,479	0,64	0,77	0,88	0,96					
7	0,9337	0,2543	0,435	0,58	0,71	0,81	0,9	0,9671				
8	0,9419	0,2335	0,401	0,54	0,65	0,76	0,843	0,9163	0,97			
9	0,9483	0,2164	0,372	0,5	0,61	0,71	0,792	0,8661	0,93	0,98		
10	0,9534	0,2021	0,348	0,47	0,57	0,66	0,747	0,8199	0,88	0,94	0,979	

 Tabela 3.3 - Fatores de Forma para Seção Circular e números de steps.

Além da área efetiva de ferro (3.10), foram estimados a tensão de saturação de $2,9kV_{PICO}$ e a indução magnética de 1,8 T e substituindo os parâmetros estimados na expressão 3.9, tem-se que o número de espiras para o RNS é de aproximadamente

$$N = \frac{\frac{2900}{\sqrt{2}}}{4,44 \cdot 1,8 \cdot 60 \cdot 8640 \cdot 10^{-6}} = 495 \ espiras \tag{3.16}$$

A curva de magnetização do núcleo naturalmente saturado foi obtida através da curva $B \times H$ do ferro, ver Tabela 3.2 e Figura 3.7, e dos parâmetros inicialmente estimados e ajustados de modo a obter as características magnéticas desejadas.

O fluxo concatenado é dado pela seguinte expressão:

$$\lambda = \phi \cdot N \tag{3.17}$$

Substituindo a expressão 3.7 em 3.17, tem-se que,

$$\lambda = B \cdot A \cdot N \tag{3.18}$$

A tensão é dada por:

$$V = \omega \cdot \lambda \tag{3.19}$$

Assim a equação 3.19 pode ser escrita da seguinte forma:

$$V = 2\pi f \cdot B \cdot A \cdot N \tag{3.20}$$

A corrente é dada pela lei de Ampère:

$$Hl = Ni \tag{3.21}$$

De modo que pode ser calculada pela seguinte expressão:

$$i = \frac{Hl}{N} \tag{3.22}$$

Onde H e l são o campo e caminho magnético, respectivamente.

A Figura 3.11 mostra a curva V x I obtida para a bobina de núcleo saturado das Estruturas Assimétrica e Simétrica.

Figura 3.11 – Curva V x I para a Estrutura Assimétrica e Simétrica.

3.4.1 – Dimensionamento do condutor para o Reator Naturalmente Saturado – RNS

Foi usado um condutor retangular de seção 24,14 mm², 5 mm de espessura e 5 mm de largura. A altura da janela foi estimada em 900 mm e as espiras disposta em três camadas respeitando as distancia de isolação de 13 mm [11] como pode ser visto na Figura 3.12.

Figura 3.12 – Bobina do RNS.

As resistências das bobinas são calculadas da seguinte forma:

$$R_{Bobina} = \frac{\rho \cdot l_{cobre}}{A_{cobre}} \quad (3.23)$$

Onde,

 l_{cobre} é o comprimento de cobre;

Acobre é a área da seção de cobre;

 ρ é a resistividade do cobre.

Para a bobina de núcleo saturado tem-se:

$$R_{Bob\ RNS} = \frac{1,72 \cdot 10^{-8} \cdot 183,3}{24,14 \cdot 10^{-6}} \cong 0,13\ \Omega \qquad (3.24)$$

3.5– Dimensionamento do Reator Linear Série – RLS – Estrutura ferromagnética

Para o dimensionamento do RLS também se estima a área efetiva de ferro necessária em mm², a reatância em ohms $[\Omega]$ e a corrente de carga em Ampère [A] ao qual será submetido o reator linear.

De acordo com [12] o fluxo magnético sofre um fenômeno chamado de espraiamento (*Fringing Flux*) ao cruzar o entreferro (Gap), conforme pode ser visto na Figura 3.13. Isto faz com que a área geométrica do entreferro por onde passa o fluxo seja maior que a área geométrica do ferro.

Figura 3.13 – Fenômeno de espraiamento (Fringing Flux).

Considerando o fenômeno de espraiamento, a área geométrica do RLS é dada por:

$$A_{gRLS} = \left(a + l_g\right) \cdot \left(b + l_g\right) \quad (3.25)$$

Onde,

 l_g é altura do gap (entreferro);

a é a largura do núcleo do RLS;

b é o comprimento do núcleo do RLS.

Conforme [9] a seção geométrica do núcleo do RLS foi estimada da seguinte forma:

$$A_{gRNS} = 9000 \ mm^2$$
 (3.26)

Porém, está seção não representa a seção verdadeira de ferro, ou seja, a seção magnética, pois entre uma lâmina e outra existe uma espessura de material isolante. Assim sendo, a seção magnética é obtida multiplicando a seção geométrica pelo fator de empilhamento (f_e). Logo, a seção magnética é dada por:

$$A_{m_{RNS}} = 9000 \cdot 0,96 = 8640 \ mm^2 \quad (3.27)$$

O RLS foi dimensionando com uma seção circular com a mesma área e número de steps do RNS para que a estrutura fosse construtivamente viável, visto que não são estruturas independentes, como pode ser observado na Figura 3.14.

Figura 3.14 – Vista superior do ARMTRS – RLS com a mesma área do RNS.

A altura do gap é calculada de modo que a menor dimensão da área da secção reta do núcleo do RLS não seja menor que o quíntuplo do comprimento do entreferro [12]. Ou seja,

$$g < \frac{1}{k_f} \cdot l_{Menor} \qquad (3.28)$$

Conforme a Figura 3.15 tanto a profundidade quanto o comprimento possuem o mesmo valor, portanto não há distinção em qual lado será usado como referencia. Usando um fator k_f de 8,5, tem-se que a altura do gap é dada por:

$$g < \frac{1}{8,5} \cdot 106 \Longrightarrow g < 12,5 \ mm$$
 (3.29)

Figura 3.15 – Seção circular do RLS com 4 steps.

O *Fringing Flux* foi modelado conforme [13], este modelo foi escolhido devido a sua simplicidade e precisão estável e é dado por:

$$F_{flux} = 1 + \frac{l_g}{\sqrt{A_{RLS}}} \cdot \ln \frac{2G}{l_g}$$
(3.30)

Onde G é a altura do núcleo.

Substituindo os parâmetros do RLS na expressão 3.30 e, tem-se que

$$F_{flux} = 1 + \frac{12,5 \cdot 10^{-3}}{\sqrt{9000 \cdot 0,96 \cdot 10^{-6}}} \cdot \ln \frac{2(900 \cdot 10^{-3})}{12,5 \cdot 10^{-3}} = 1,67 \quad (3.31)$$

Conforme [14] a relutância é dada por:

$$\Re = \frac{l_m + l_g \cdot \mu_r}{\mu_r \mu_0 \cdot A_{RLS}} \qquad (3.32)$$

Onde,

l_m é o caminho médio magnético;

 μ_r é a permeabilidade relativa do meio;

 μ_0 é a permeabilidade do ar;

E a indutância do RLS é dada por:

$$L = \frac{N^2}{\mathcal{R}} \qquad (3.33)$$

Substituindo (3.32) em (3.33), tem-se que a indutância do RLS é dada por:

$$L = N^2 \frac{\mu_r \cdot \mu_0 \cdot A_{RLS}}{l_m + l_g \cdot \mu_r} \qquad (3.34)$$

Considerando o Fringing Flux a expressão (3.34) torna-se igual a:

$$L_c = F_{flux} \cdot N^2 \frac{\mu_r \cdot \mu_0 \cdot A_{RLS}}{l_m + l_g \cdot \mu_r} \qquad (3.35)$$

Logo, o número de espirada é dado por:

$$N = \sqrt{\frac{L_c (l_m + l_g \mu_r)}{F_{flux} \cdot \mu_r \cdot \mu_0 A_{RLS}}} \qquad (3.36)$$

A reatância necessária para o RLS é de 3,5 Ω , o que resulta numa indutância de aproximadamente 9,3 mH e considerando que o caminho magnético (l_m) seja de 2392,7 mm e a permeabilidade relativa do meio igual a 9189,21. Logo, o número de espiras necessárias para o RLS é de

$$N = \sqrt{\frac{9,3 \cdot 10^{-3}(2392,7 \cdot 10^{-3} + 12,5 \cdot 10^{-3} \cdot 9189,21)}{1,67 \cdot 9189,21 \cdot 4\pi \cdot 10^{-7} \cdot 9000 \cdot 0,96 \cdot 10^{-6}}} \cong 81 \ espiras \quad (3.37)$$

E a indução do gap é dada por:

$$B_{Gap} = \frac{\mu_0 \cdot Ni}{l_g} \tag{3.38}$$

Considerando uma corrente de carga igual a $165,7A_{RMS}$, tem-se que a indução magnética do gap é de

$$B_{Gap} = \frac{4\pi \cdot 10^{-7} \cdot 81 \cdot 165,7}{12,5 \cdot 10^{-3}} \cong 1,35 \, T \tag{3.39}$$

É preciso salientar que o RLS foi dimensionado com a corrente de carga prevista para o oitavo ano como pode ser visto na Tabela 2.6, esse critério é importante para que a indução no RLS não se eleve muito se caso fosse dimensionado com a corrente de carga do primeiro ano. A Tabela 3.4 mostra a indução no RLS para cada ano.

Ano	$B_{RLS}(T)$
1	0,94
2	0,99
3	1,04
4	1,10
5	1,16
6	1,22
7	1,28
8	1,35

Tabela 3.4 – Indução no RLS ao longo dos anos.

3.5.1 – Dimensionamento do condutor para o Reator Linear Série – RLS – Estrutura ferromagnética

Foi estimada uma densidade de corrente média em torno de 2,5 A/mm² para uma corrente de carga em torno de $165,7A_{RMS}$. Para esses dados seria necessário usar um fio de cobre com uma seção de 55,23 mm². Conforme mostra a equação 3.40,

$$S = \frac{l}{d} = \frac{165,7}{2,5} = 66,28 \ mm^2 \ (3.40)$$

No entanto o fio escolhido tem uma seção retangular de 58,60 mm² com espessura de 6,54 mm e largura de 9,27 mm. Com essa seção obteve-se uma densidade real de corrente de 2,8 A/mm² em regime permanente conforme pode ser visto em 3.41.

$$d_{real} = \frac{I}{S_{real}} = \frac{165,7}{58,60} = 2,8 \, A/mm^2 \qquad (3.41)$$

A Tabela 3.5 mostra a densidade de corrente para o RLS ao longo dos anos.

ν	Jensiadae de corrente no KLS do l							
	Ano	d_{real} (A/mm ²)						
	1	2,0						
	2	2,1						
	3	2,2						
	4	2,3						
	5	2,4						
	6	2,5						
	7	2,7						
	8	2,8						

 Tabela 3.5 – Densidade de corrente no RLS ao longo dos anos.

A altura da janela foi estimada em 900 mm e as espiras disposta em uma única camada respeitando as distancia de isolação [11] como pode ser visto na Figura 3.16.

Figura 3.16 - Bobina do RLS.

As resistências das bobinas são calculadas conforme a expressão 3.23. Para a bobina de núcleo linear tem-se:

$$R_{Bob\ RNS} = \frac{1,72 \cdot 10^{-8} \cdot 28,9}{58,60 \cdot 10^{-6}} \cong 0,01 \quad (3.42)$$

3.6- Dimensionamento do Retorno

Para o dimensionamento do retorno estimou-se que a indução seria a metade da indução do reator saturado para que o mesmo não entrasse em saturação. Logo, a área geométrica do retorno é igual a:

$$A_{g_{Retorno}} = \frac{B_{RNS}}{B_{Retorno}} \cdot A_{g_{RNS}} \qquad (3.43)$$

$$A_{g_{Retorno}} = \frac{1.8}{0.9} \cdot 9000 = 18000 \ mm^2 \qquad (3.44)$$

3.7- Dimensionamento do Reator Linear Série - RLS - Núcleo de Ar - Limitador de corrente de curto

Para o dimensionamento do RLS no ar estima-se a reatância necessária em ohms $[\Omega]$, o raio e a altura da bobina em milímetros [mm] e a corrente de carga em Ampère [A] à qual será submetido a bobina de núcleo de ar. A Figura 3.17 mostra um layout de uma bobina de núcleo de ar.

Figura 3.17 – Layout de uma bobina de núcleo de ar.

Segundo [15] o cálculo da indutância de uma bobina de camada única é baseado em enrolamento concentrado, sobre uma forma cilíndrica em meio homogêneo como é observado na Figura 3.18.

Figura 3.18 – Bobina de camada única com forma cilíndrica.

A indutância é calculada pela formula de Nagaoka e é dada pela expressão 3.45.

$$L = \frac{\mu_0 \pi a^2 N^2 K}{b}$$
 (3.45)

Para o número de espiras, tem-se que

$$N = \sqrt{\frac{L \cdot b}{\mu_0 \pi a^2 K}} \qquad (3.46)$$

Onde,

a é o raio da bobina;

b é a altura da bobina;

K é o fator de forma de Nagaoka.

As bobinas de ar podem ser curtas ou longas como mostra a Figura 3.19.

Figura 3.19 – Bobina Longa e Curta.

3.7.1 - Cálculos das Bobinas Curtas

Para o cálculo das boninas curtas a relação entre a altura e o diâmetro é dada por:

$$\alpha = \frac{b}{2a} < 1 \quad (3.47)$$

$$b < 2a$$
 (3.48)

De acordo com [15] o fator K da equação 3.46 é dado pela Tabela 3.6.

	Tuben 5.6 Theorem R para boomas carta.											
	Bobina Curta											
b/2a	K	b/2a	K	b/2a	K	b/2a	K	b/2a	K			
0,00	0,0000000	0,21	0,3294790	0,42	0,4834960	0,63	0,581462	0,84	0,649358			
0,01	0,0349600	0,22	0,3388520	0,43	0,4891290	0,64	0,585252	0,85	0,65207			
0,02	0,0610980	0,23	0,3479600	0,44	0,4946460	0,65	0,588976	0,86	0,654743			
0,03	0,0839070	0,24	0,3568160	0,45	0,5000520	0,66	0,592638	0,87	0,657376			
0,04	0,1045620	0,25	0,3654320	0,46	0,5053480	0,67	0,596239	0,88	0,659972			
0,05	0,1236150	0,26	0,3738180	0,47	0,5105390	0,68	0,59978	0,89	0,662532			
0,06	0,1413950	0,27	0,3819860	0,48	0,5156280	0,69	0,603263	0,90	0,665054			
0,07	0,1581190	0,28	0,3899440	0,49	0,5206170	0,70	0,606689	0,91	0,66754			
0,08	0,1739420	0,29	0,3977030	0,50	0,5255100	0,71	0,61006	0,92	0,669991			
0,09	0,1889800	0,30	0,4052690	0,51	0,53031	0,72	0,613376	0,93	0,672408			
0,10	0,2033240	0,31	0,4126500	0,52	0,535018	0,73	0,616639	0,94	0,674792			
0,11	0,2170440	0,32	0,4198560	0,53	0,539637	0,74	0,61985	0,95	0,677142			
0,12	0,2302000	0,33	0,4268900	0,54	0,54417	0,75	0,623011	0,96	0,67946			
0,13	0,2428420	0,34	0,4337620	0,55	0,54862	0,76	0,626122	0,97	0,681747			
0,14	0,2550110	0,35	0,4404740	0,56	0,552988	0,77	0,629185	0,98	0,684003			
0,15	0,2667440	0,36	0,4470360	0,57	0,557278	0,78	0,6322	0,99	0,686228			
0,16	0,2780700	0,37	0,4534500	0,58	0,561491	0,79	0,63517	1,00	0,688423			
0,17	0,2890190	0,38	0,4597240	0,59	0,565628	0,80	0,638094					
0,18	0,2996140	0,39	0,4658600	0,60	0,569691	0,81	0,640974					
0,19	0,3098760	0,40	0,4718650	0,61	0,573683	0,82	0,643811					
0,20	0,3198250	0,41	0,4777420	0,62	0,577606	0,83	0,646605					

Tabela 3.6 – Valor de K para bobinas curta

No projeto do reator linear de núcleo de ar que compõem o ARMTRS a reatância indutiva necessária para limitar a corrente de curto-circuito é de 3Ω . Para o dimensionamento dessa reatância, estimou-se que o raio e a altura necessária para satisfazer a equação 3.48, é de 750 mm e 360 mm, respectivamente. Substituindo esses valores em 3.47, tem-se que

$$\alpha = \frac{350}{2 \cdot 700} = 0,25 < 1 \quad (3.49)$$

Logo, o fator de forma de Nagaoka segundo a Tabela 3.6 é dado por

$$K = 0,356816 \quad (3.50)$$

Então o número de espiras necessárias para o RLS no ar é de

$$N = \sqrt{\frac{(^3/_{2\pi \cdot 60}) \cdot 360 \cdot 10^{-3}}{4\pi 10^{-7}\pi \cdot (750 \cdot 10^{-3})^2 \cdot 0,356816}} \cong 61 \quad (3.51)$$

O condutor foi dimensionado da mesma forma que o reator linear ferromagnético como mostrado na seção 3.5.1, usou-se um condutor com seção retangular de 34,66 mm² e com espessura e largura de 6 mm. Para um total de 61 espiras e espessura de 6 mm a altura real da bobina é dada por

$$b_{Real} = espiras \times espessura = 61 \times 6 = 366 mm$$
 (3.52)

Substituindo a altura real da bobina na equação 3.45, tem-se que a reatância real é de

$$X_{Real} = \frac{4\pi \cdot 10^{-7} \cdot \pi \cdot (750 \cdot 10^{-3})^2 \cdot 61^2 \cdot 0.356816}{366 \cdot 10^{-3}} \cdot 2\pi \cdot 60 = 3.03 \,\Omega \tag{3.53}$$

3.7.2 - Cálculos das Bobinas Longas

Para o cálculo das boninas longas a relação entre a altura e o diâmetro é dada por:

$$\alpha = \frac{b}{2a} > 1 \ (3.54)$$

O que resulta em,

$$b > 2a$$
 (3.55)

Bobina Longa											
2a/b	K	2a/b	K	2a/b	K	2a/b	Κ	2a/b	K		
0,00	1,0000000	0,21	0,9163560	0,42	0,8433350	0,63	0,780032	0,84	0,72524		
0,01	0,9957690	0,22	0,9126430	0,43	0,8401100	0,64	0,77724	0,85	0,722821		
0,02	0,9915620	0,23	0,9089540	0,44	0,8369060	0,65	0,774467	0,86	0,720419		
0,03	0,9873810	0,24	0,9052900	0,45	0,8337230	0,66	0,77173	0,87	0,718033		
0,04	0,9832240	0,25	0,0901649	0,46	0,8305630	0,67	0,768978	0,88	0,715663		
0,05	0,9790920	0,26	0,8980330	0,47	0,8274240	0,68	0,766262	0,89	0,713308		
0,06	0,9749850	0,27	0,8944400	0,48	0,8243070	0,69	0,763565	0,90	0,710969		
0,07	0,9709030	0,28	0,8908710	0,49	0,8212110	0,70	0,760886	0,91	0,708647		
0,08	0,9668470	0,29	0,8873250	0,50	0,8181360	0,71	0,758225	0,92	0,706339		
0,09	0,9628150	0,30	0,8838030	0,51	0,815082	0,72	0,755582	0,93	0,704047		
0,10	0,9588070	0,31	0,8803050	0,52	0,812049	0,73	0,752958	0,94	0,70177		
0,11	0,9548250	0,32	0,8768290	0,53	0,809037	0,74	0,750351	0,95	0,699509		
0,12	0,9508680	0,33	0,8733770	0,54	0,806046	0,75	0,747762	0,96	0,697262		
0,13	0,9469350	0,34	0,8699480	0,55	0,803075	0,76	0,745191	0,97	0,69503		
0,14	0,9430250	0,35	0,8665420	0,56	0,800125	0,77	0,742637	0,98	0,692813		
0,15	0,9391410	0,36	0,8631580	0,57	0,797195	0,78	0,7401	0,99	0,690611		
0,16	0,9352840	0,37	0,8597990	0,58	0,794285	0,79	0,737581	1,00	0,688423		
0,17	0,9314500	0,38	0,8564610	0,59	0,791395	0,80	0,735079				
0,18	0,9276390	0,39	0,8531460	0,60	0,788525	0,81	0,732593				
0,19	0,9238540	0,40	0,8498530	0,61	0,785675	0,82	0,730126				
0,20	0,9200930	0,41	0,8465830	0,62	0,782844	0,83	0,727675				

 Tabela 3.7 - Valor de K para bobinas longas.

No projeto do reator linear no ar que compõem o ARMTRS a reatância indutiva necessária para limitar a corrente de curto-circuito é de 3 Ω . Para o dimensionamento dessa reatância, estimou-se que o raio e a altura necessária para satisfazer a equação 3.54, é de 350 mm e 800 mm, respectivamente. Substituindo esses valores em 3.54, tem-se que

$$\alpha = \frac{800}{2 \cdot 260} = 1,54 > 1 \quad (3.56)$$

Invertendo 3.62, o K correspondente de acordo com a Tabela 3.7 é dado por

K = 0,718033 (3.57)

Então o número de espiras necessárias para o RLS no ar é de

$$N = \sqrt{\frac{(^3/_{2\pi \cdot 60}) \cdot 800 \cdot 10^{-3}}{4\pi 10^{-7}\pi \cdot (350 \cdot 10^{-3})^2 \cdot 0,718033}} \cong 136 \quad (3.58)$$

O condutor foi dimensionado da mesma forma que o reator linear ferromagnético como mostrado na seção 3.5.1, usou-se um condutor com seção retangular de 34,66 mm² e com espessura e largura de 6 mm. Para um total de 136 espiras e espessura de 6 mm a altura real da bobina é dada por

$$b_{Real} = espiras \times espessura = 136 \times 6 = 816 mm$$
 (3.59)

Substituindo a altura real da bobina na equação 3.45, tem-se que a reatância real é de

$$X_{Real} = \frac{4\pi \cdot 10^{-7} \cdot \pi \cdot (350 \cdot 10^{-3})^2 \cdot 136^2 \cdot 0.718033}{816 \cdot 10^{-3}} \cdot 2\pi \cdot 60 = 2,96 \,\Omega \tag{3.60}$$

3.8– Desenhos de projetos dos componentes do protótipo do ARMTRS 13,8kV – Cabeça de Série

3.8.1 - Dimensões Físicas - Alimentador SLM-01C3

As Figuras 3.20, 3.21, 3.22 e 3.23 mostram o desenho com as dimensões físicas para confecção da estrutura ferromagnética composta pelo RNS e RLS, tanto para a Estrutura Assimétrica quanto para a Estrutura Simétrica. Nestes desenhos, a estrutura do núcleo é definida nos seus aspectos gerais, no que tange à distribuição das colunas e do retorno para formação do monobloco, como também nas formas construtivas escolhidas para esses componentes. Como assinala o desenho, as colunas RNS e RLS deverão exibir uma seção circular com diâmetro de 113,5 mm, enquanto o retorno deverá ser construído com secção retangular com comprimento de 212 mm. Todas as dimensões da estrutura ferromagnética do núcleo estão indicadas nesses desenhos, tais como a altura das colunas e as distâncias
que deverão ser respeitadas entre as mesmas para acomodar satisfatoriamente os enrolamentos. O tipo de aço silicioso utilizado para a fabricação do protótipo do cabeça de série é o aço silicioso de grão orientado com 0,27 mm de espessura (M125-27-E-004). Uma estimativa da quantidade necessária desse material é de 384,9kg para cada núcleo monofásico, sendo estimado um total de 1154,8kg de aço para os três núcleos.

Figura 3.20 – Dimensões físicas da estrutura ferromagnética Assimétrica (todas as unidades estão em milímetros) - SLM-01C3.

Figura 3.21 – Dimensões físicas da estrutura ferromagnética Assimétrica – Vista Superior dos núcleos (todas as unidades estão em milímetros) - SLM-01C3.

Figura 3.22 – Dimensões físicas da estrutura ferromagnética Simétrica (todas as unidades estão em milímetros) - SLM-01C3.

Figura 3.23 – Dimensões físicas da estrutura ferromagnética Simétrica – Vista Superior dos núcleos (todas as unidades estão em milímetros) – SLM-01C3.

As Figuras 3.21 e 3.23 mostram as dimensões de corte das lâminas de aço para produzir uma secção circular para a coluna do reator naturalmente saturado e o reator linear série. A opção para isso foi a construção em 4 (quatro) degraus, sendo o primeiro degrau com um comprimento de 106 mm, o segundo degrau com 90,5 mm, o terceiro degrau com 69 mm e o quarto e último degrau com 40,8 mm. Os desenhos mencionados fornecem todas as dimensões em milímetros das chapas para a composição dessa secção circular.

3.8.2 - Dimensões Físicas - Alimentador ITA-03

As Figuras 3.24, 3.25, 3.26 e 3.27 mostram o desenho com as dimensões físicas para confecção da estrutura ferromagnética composta pelo RNS e RLS, tanto para a Estrutura Assimétrica quanto para a Estrutura Simétrica. Nestes desenhos, a estrutura do núcleo é definida nos seus aspectos gerais, no que tange à distribuição das colunas e do retorno para formação do monobloco, como também nas formas construtivas escolhidas para esses componentes. Como assinala o desenho, as colunas do RNS e do RLS deverão exibir uma seção circular com diâmetro de 145,3 mm, enquanto o retorno deverá ser construído com secção retangular com comprimento de 276 mm. Todas as dimensões da estrutura ferromagnética do núcleo estão indicadas nesses desenhos, tais como a altura das colunas e as distâncias que deverão ser respeitadas entre as mesmas para acomodar satisfatoriamente

os enrolamentos. O tipo de aço silicioso utilizado para a fabricação do protótipo do cabeça de série é o aço silicioso de grão orientado com 0,27 mm de espessura (M125-27-E-004). Uma estimativa da quantidade necessária desse material é de 628,1kg para cada núcleo monofásico, sendo estimado um total de 1884,3kg de aço para os três núcleos.

Figura 3.24 – Dimensões físicas da estrutura ferromagnética Assimétrica (todas as unidades estão em milímetros) – ITA-03.

Figura 3.25 – Dimensões físicas da estrutura ferromagnética Assimétrica – Vista Superior dos núcleos (todas as unidades estão em milímetros) – ITA-03.

Figura 3.26 – Dimensões físicas da estrutura ferromagnética Simétrica (todas as unidades estão em milímetros) – ITA-03.

Figura 3.27 – Dimensões físicas da estrutura ferromagnética Simétrica – Vista Superior dos núcleos (todas as unidades estão em milímetros) – ITA-03.

As Figuras 3.25 e 3.27 mostram as dimensões de corte das lâminas de aço para produzir uma secção circular para a coluna do reator naturalmente saturado e o reator linear série. A opção para isso foi a construção em 5 (cinco) degraus, sendo o primeiro degrau com um comprimento de 138 mm, o segundo degrau com 123 mm, o terceiro degrau com 103 mm, o quarto degrau com 77,4 mm e o quinto e ultimo degrau com 45,5 mm. Os desenhos mencionados fornecem todas as dimensões em milímetros das chapas para a composição dessa secção circular.

3.8.3 - Arquitetura dos enrolamentos - Alimentador - SLM-01C3

As Figuras 3.28 e 3.29 fornecem a especificação do número de espiras para cada um dos enrolamentos envolvidos, N1 e N2, e as posição de montagem de cada um dos enrolamentos nas diferentes colunas do protótipo.

Neste mesmo desenho, Figuras 3.28 e 3.29, especificam-se a forma como cada enrolamento deverá ser construído e os materiais condutores necessários para isso. Foi usado no enrolamento N1 um condutor de secção de área retangular de 24,14 mm², 5,0 mm de largura e 5,0 mm de espessura, sendo constituído de 495 espiras disposta em 3 (três) camadas. No enrolamento N2 foi usado um condutor de seção de área retangular de 58,6 mm², 9 mm de largura e 6,0 mm de espessura, sendo constituído de 81 espiras disposta em 1 (uma) camada.

Para nortear o fabricante, calculou-se o peso total de cobre previsto para a confecção de todos os enrolamentos do protótipo (três unidades monofásicas), o que resulta em aproximadamente 159,1kg.

Figura 3.28 – Arquitetura dos enrolamentos – Estrutura ferromagnética Assimétrica (todas as unidades estão em milímetros) – SLM-01C3.

Figura 3.29 – Arquitetura dos enrolamentos – Estrutura ferromagnética Simétrica (todas as unidades estão em milímetros) – SLM-01C3.

3.8.4 - Arquitetura dos enrolamentos - Alimentador - ITA-03

As Figuras 3.30 e 3.31 fornecem a especificação do número de espiras para cada um dos enrolamentos envolvidos, N1 e N2, e as posição de montagem de cada um dos enrolamentos nas diferentes colunas do protótipo.

Neste mesmo desenho, Figuras 3.30 e 3.31, especificam-se a forma como cada enrolamento deverá ser construído e os materiais condutores necessários para isso. Foi usado no enrolamento N1 um condutor de secção de área retangular de 24,14 mm², 5,0 mm de largura e 5,0 mm de espessura, sendo constituído de 564 espiras disposta em 3 (três) camada. No enrolamento N2 foi usado um condutor de seção de área retangular de 34,66 mm², 5 mm de largura e 6,0 mm de espessura, sendo constituído de 141 espiras disposta em 1 (uma) camada.

Para nortear o fabricante, calculou-se o peso total de cobre previsto para a confecção de todos os enrolamentos do protótipo (três unidades monofásicas), o que resulta em aproximadamente 240,4kg.

Figura 3.30 – Arquitetura dos enrolamentos – Estrutura ferromagnética Assimétrica (todas as unidades estão em milímetros) – ITA-01C3.

Figura 3.31 – Arquitetura dos enrolamentos – Estrutura ferromagnética Simétrica (todas as unidades estão em milímetros) – ITA-01C3.

3.8.5 - Dimensões Físicas - Bobina de Núcleo de Ar

Uma vez que o alimentador de ITA-03 não possui bobina com núcleo de ar, todos os desenhos de projetos mostrados nas seções a seguir serão para o alimentador de SLM-01C3.

3.8.5.1 - Bobina Curta

A Figura 3.32 mostra o desenho com as dimensões físicas para confecção do RLS com núcleo de ar. Neste desenho, a estrutura da bobina é definida nos seus aspectos gerais, como assinala o desenho, a bobina deverá exibir uma seção circular com diâmetro de 1500 mm e a altura de 366 mm. Foi usado um condutor de secção de área retangular de 34,66 mm², 6,0 mm de largura e 6,0 mm de espessura, sendo constituído de 61 espiras disposta em 1 (uma) camada. Para nortear o fabricante, calculou-se o peso total de cobre previsto para a confecção da bobina, o que resulta em aproximadamente 88,57 kg para cada bobina monofásica.

Figura 3.32 – Bobina curta (a) Vista Superior e (b) Vista Frontal.

3.8.5.2 - Bobina Longa

A Figura 3.33 mostra o desenho com as dimensões físicas para confecção do RLS com núcleo de ar. Nestes desenhos, a estrutura da bobina é definida nos seus aspectos gerais, como assinala o desenho, a bobina deverá exibir uma seção circular com diâmetro de 700 mm e a altura de 816 mm. Foi usado um condutor de secção de área retangular de 34,66 mm², 6,0 mm de largura e 6,0 mm de espessura, sendo constituído de 136 espiras disposta em 1 (uma) camada. Para nortear o fabricante, calculou-se o peso total de cobre previsto para a confecção da bobina, o que resulta em aproximadamente 92,15 kg para cada bobina monofásica.

Figura 3.33 – Bobina Longa (a) Vista superior e (b) Vista frontal.

CAPÍTULO 4

DADOS EXPERIMENTAIS E DE SIMULAÇÃO DO ARMTRS -380V- PROTÓTIPO DE BANCADA

4.1 - Considerações preliminares

Objetivando realizar experimentações laboratoriais foram projetadas unidades monofásicas para duas estruturas distintas de protótipo do ARMTRS denominadas de Estrutura Assimétrica e Estrutura Simétrica, como foi mostrado nas Figuras 3.6 (a) e 3.6 (b).

As características elétricas para o protótipo de bancada foram levantadas em laboratórios para verificar os conceitos empregados em sua construção, uma vez que dificilmente as características obtidas por simulação serão exatamente reproduzidas no processo construtivo.

Na fase de simulação só se tem acesso a característica $B \ x \ H$ da chapa, a qual é fornecida pelo fabricante. Em virtude de esta característica original diferir da característica de saturação dos núcleos devido o fator de empilhamento e de entreferros introduzidos no processo construtivo, o levantamento da curva característica $\lambda x i$ do RNS e V x i do RLS é essencial para que se possa simular as estruturas construídas, retratando-a de forma mais fiel possível.

4.2 - Dimensionamento e montagem dos protótipos de bancada 380 V

As estruturas ferromagnéticas do protótipo de bancada do ARMTRS-380V foram dimensionadas sob os mesmos princípios usados para o protótipo do cabeça de série ARMTRS-13,8kV apresentados no capítulo 3. Diferindo deste, apenas pela a ausência da bobina de núcleo de ar que não compõe o protótipo de bancada.

Um conjunto de fotos das peças de aço silício utilizado para construção dos núcleos do protótipo de bancada e das bobinas é mostrado na Figura 4.1.

As chapas são montadas com a superposição de uma sobre a outra. Essa forma de montagem é a mais usual para transformadores de pequeno porte, porém, como o RNS tem

seu ponto de operação com elevados valores da indução magnética tal procedimento levará a um alto nível de perda e dificultará um controle na inclinação da curva V x I. As perdas podem ser controladas com a introdução de retraços entre as chapas superpostas. A tarefa de corte e montagem foi realizadas pela N2A Equipamentos.

(A)

(B)

(C)

(D)

Figura 4.1 – (A) Representa umas das bobinas construídas; (B) Representa as bobinas com as chapas de aço parcialmente montadas; (C) Representa a forma de montagem dos protótipos; (D) Representa a Estrutura Assimétrica construída e (E) Representa a Estrutura Simétrica construída.

Os desenhos com todas as dimensões usadas para a construção dos protótipos tanto para a Estrutura Assimétrica quanto para a Estrutura Simétrica encontram nos Anexos 7.2 e 7.3, respectivamente. O Anexo 7.4 mostra a curva de magnetização e perdas do aço E-004 e os pontos dessas curvas ambos fornecidos pelo fabricante.

4.3 - Modelagem do sistema

A Figura 4.2 e a Tabela 4.1 mostram o esquema de montagem do sistema e os dados usados nos experimentos e simulações do protótipo de bancada do ARMTRS, respectivamente. O sistema foi montado com uma fonte de tensão senoidal e uma impedância equivalente descrita no Anexo 7.5, também fazem parte desse sistema a carga nominal representada por uma resistência descrita no Anexo 7.6, um defeito representado também por uma resistência descrita no Anexo 7.7 e os componente do ARMTRS (RLS, RNS e BCS), o Anexo 7.8 mostra ensaio para obtenção da reatância capacitiva. A chave usada para estabelecer o curto-circuito no sistema foi fabricada pela N2A EQUIPAMENTO descrita conforme [16].

Figura 4.2 – Montagem do sistema para experimentação e simulação.

	Estrutura Assimétrica		Estrutura Simétrica
V _F (V _{RMS})		220	
$X_{Eq}(\Omega)$		5,5	
$\mathbf{R}_{\mathrm{Eq}}(\mathbf{\Omega})$		0,06	
$\mathbf{R}_{\mathrm{cobre}}\left(\Omega ight)$	0,3		0,07
$X_{L}(\Omega)$	3,2		3,5
$X_{C}(\Omega)$		4,5	
$R_{Carga}(\Omega)$		72	
$\mathbf{R}_{\mathrm{Curto}}(\Omega)$		25,25	
$\mathbf{R}_{\mathrm{Perdas}}\left(\Omega ight)$		325	

Tabela 4.1 – Dados do Sistema para experimento e simulação.

A corrente de carga do sistema em regime normal de operação é de aproximadamente $3A_{RMS}$ conforme mostra a expressão 4.1.

$$I_{Carga} = \frac{220}{72 + j4,2} = 3,0 \angle -3,34^{\circ} A_{RMS} \qquad (4.1)$$

O programa EMTP-ATP foi utilizado como ferramenta para a modelagem e análise do sistema mostrado na Figura 4.2. A modelagem da fonte de tensão, dos elementos lineares, da carga e do defeito forma modelados conforme procedimentos descritos em [3]. A ferramenta FEMM foi usada para análise do comportamento magnético das estruturas ferromagnéticas do ARTMTRS.

4.3.1 - Modelagem do RNS

O RNS, elemento não linear do ARMTRS, foi modelado com e sem a dualidade eletromagnética equivalente do circuito e foram usados os elementos *nonlinear current-dependent inductor* (TYPE 98 e 96) disponível no *software* EMTP-ATP. Conforme [3] na implementação do modelo do indutor não-linear no EMTP-ATP, o elemento requerido é a característica *fluxo de enlace×corrente* ($\lambda \times i$) do mesmo, a qual deverá ser determinada diretamente por meio de ensaios no dispositivo com a utilização de uma placa integradora.

A equivalência da dualidade entre o circuito elétrico e o circuito magnético usado nesse trabalho é baseada na regra Cherry [17] e [18]. De acordo com Cherry a dualidade entre os circuitos é obtido marcando um ponto (a,b,...) dentro de cada mecha do circuito como mostra a Figura 4.3 (a) e um outro ponto externo ao circuito (k). Estes pontos, quando juntados pelas linhas pontilhadas formam o ponto de junção do circuito dual, como podem ser visto na Figura 4.3 (b). Este circuito dual agora tem impedâncias inseridas nos ramos Z₁, Z₂, Z₃... que são proporcionais às admitâncias a₁, a₂, a₃... no correspondente (cruzamento) ramo do circuito da Figura 4.3 (a) no sentido Z₁ : Z₂ : Z₃: ... = a₁ : a₂ : a₃ : ... ou Z_n = K²_{an}, onde K é uma constante real.

Figura 4.3 – Circuito dual equivalente.

4.3.1.1 – Dualidade da Estrutura Assimétrica e Simétrica

As Figuras 4.4 e 4.5 mostram o circuito dual usado para a Estrutura Assimétrica e Simétrica, respectivamente, onde pode ser visto que além do RNS, o retorno e os jugos (culatras) foram representados por elementos não lineares.

Figura 4.4 – Montagem do sistema Dualidade da Estrutura Assimétrica.

Figura 4.5 – Montagem do sistema Dualidade da Estrutura Simétrica.

4.3.2 – Curva característica $\lambda x i$ do RNS

As curvas características $\lambda x i$ dos RNS's foram levantadas por meio de ensaio como descrito em [3] e os resultados de ensaio para esse elemento se encontra no Anexo 7.9. A Figura 4.6 mostra as curvas características $\lambda x i$ para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.6 – *Curva característica* $\lambda x i$.

4.33 - Curva característica V x i do RLS

As curvas características V x i do RLS's também foram levantadas por meio de ensaio como descrito em [3] e os resultados de ensaio para esse elemento se encontra no Anexo 7.10. A Figura 4.7 mostra as curvas características V x i para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.7 – Curva característica V x i.

4.4 - Resultados Experimentais

Serão mostrados nessa seção todos os resultados obtidos em laboratório tanto para a Estrutura Assimétrica quanto para a Estrutura Simétrica.

A Figura 4.8 mostra as formas de onda da corrente de carga, do RNS e do BCS para a Estrutura Assimétrica em regime permanente de operação, no transitório e durante o defeito. Já a Figura 4.9 mostra os resultados das correntes para a Estrutura Simétrica.

Figura 4.8 – Forma de onda da corrente de carga (Δ), RNS (\circ) e BCS (\Box) para a Estrutura Assimétrica em regime permanente, no transitório e durante um defeito.

Figura 4.9 – Forma de onda da corrente de carga (Δ), RNS (\circ) e BCS (\Box) para a *Estrutura Simétrica em regime permanente, no transitório e durante um defeito.*

As Figuras 4.10 e 4.11 mostram as formas de onda da tensão e da corrente submetida aos terminais do RNS para a Estrutura Assimétrica e Simétrica, respectivamente, ficando evidente que o RNS entra em seu estado de saturação quando o valor da tensão de saturação é ultrapassado.

Figura 4.10 – *Forma de onda da tensão (○) e da corrente (□) no RNS para a Estrutura Assimétrica em regime permanente, no transitório e durante um defeito.*

Figura 4.11 – Forma de onda da tensão (○) e da corrente (□) no RNS para a Estrutura Simétrica em regime permanente, no transitório e durante um defeito.

As Figuras 4.12 e 4.13 mostram as formas de onda da tensão submetida à carga tanto para a Estrutura Assimétrica quanto para a Estrutura Simétrica, respectivamente.

Figura 4.12 – Forma de onda da tensão na carga para a Estrutura Assimétrica em regime permanente, no transitório e durante um defeito.

Figura 4.13 – Forma de onda da tensão na carga para a Estrutura Simétrica em regime permanente, no transitório e durante um defeito.

4.5 - Resultados de Simulação

Os resultados obtidos em simulação serão mostrados nessa seção e serão comparados com os resultados obtidos experimentalmente com o intuito de avaliar se o modelo simulado representa de forma aceitável o sistema experimentado. O roteiro em ATP para os sistemas simulados encontram-se no Apêndice 6.10 a 6.17.

4.5.1 - Resultados de Simulação sem dualidade eletromagnética

As Figuras 4.14 e 4.15 mostram a forma de onda da corrente de carga para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente. Para os resultados de simulação forma usados os elementos *nonlinear current-dependent inductor* (TYPE 98 e 96) disponível no *software* EMTP-ATP. Conforme [19] a característica $\lambda x i$ do elemento TYPE 96 deve ser obtida através de um laço de histerese descrita no Anexo 7.11.

Figura 4.14 – Forma de onda da corrente de carga para a Estrutura Assimétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

Figura 4.15 – Forma de onda da corrente de carga para a Estrutura Simétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

As Figuras 4.16 e 4.17 mostram a forma de onda da tensão de carga para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.16 – Forma de onda da tensão na carga para a Estrutura Assimétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

Figura 4.17 – Forma de onda da tensão na carga para a Estrutura Simétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

As Figuras 4.18 e 4.19 mostram a forma de onda da tensão no BCS e RNS para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.18 – Forma de onda da tensão no BCS e RNS para a Estrutura Assimétrica. Type 98 (○), Type 96 (△) e Experimento (□).

Figura 4.19 – Forma de onda da tensão no BCS e RNS para a Estrutura Simétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

As Figuras 4.20 e 4.21 mostram a forma de onda da corrente no BCS para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.20 – Forma de onda da corrente no BCS para a Estrutura Assimétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

Figura 4.21 – Forma de onda da corrente no BCS para a Estrutura Simétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

As Figuras 4.22 e 4.23 mostram a forma de onda da corrente no RNS para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.22 – Forma de onda da corrente no RNS para a Estrutura Assimétrica. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

(\circ), Type 96 (Δ) e Experimento (\Box).

A Tabela 4.2 mostra os valores de corrente e de tensão do sistema obtidos em simulação e experimento.

Regime Permanente								
	Experin	nento	Simulação					
			<i>TYPE 98</i>		<i>TYPE 96</i>			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{RMS})	3,3	3,2	3,1	3,1	3,1	3,1		
V _{Carga} (V _{RMS})	222,0	223,3	219,4	220,0	219,4	219,6		
V _{BCS} (V _{RMS})	14,7	14,8	12,8	13,4	14,2	14,2		
I _{BCS} (A _{RMS})	3,3	3,2	3,1	3,2	3,3	3,3		
I _{RNS} (A _{RMS})	-	-	_	-	-	-		
<u>Transitório</u>								
	Experin	nento	Simulação					
			<i>TYPE 98</i>		<i>TYPE 96</i>			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{PICO})	15,2	14,4	12,1	14,3	12,3	14,3		
V _{Carga} (V _{PICO})	248	252	225,5	236,6	228,9	236,5		
V _{BCS} (V _{PICO})	139,2	140,8	113,9	146,2	113,9	146,5		
I _{BCS} (A _{PICO})	126	144	104,5	135,0	105,0	138,7		
I _{RNS} (A _{PICO})	116	120	108,3	141,6	108,1	144,7		
	1	Durante	<mark>e um curto - ci</mark>	<u>rcuito</u>	I	1		
	Experimento		Simulação					
			<i>TYPE 98</i>		<i>TYPE 96</i>			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{RMS})	7,9	7,9	7,4	7,4	7,4	7,5		
V _{Carga} (V _{RMS})	147,1	135,8	137,2	137,3	136,9	138,9		
V _{BCS} (V _{PICO})	85,9	78,1	80,8	73,4	80,9	73,4		
I _{BCS} (A _{PICO})	76,4	72,1	74,7	69,9	74,9	70,1		
I _{RNS} (A _{PICO})	80,6	77,9	79,6	76,7	79,8	76,9		

Tabela 4.2 – Comparação dos resultados experimentados e simulados.

4.5.2 - Resultados de Simulação com dualidade eletromagnética

As Figuras 4.24 e 4.25 mostram a forma de onda da corrente de carga para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente. Para a modelagem com dualidade eletromagnética também foram usados os elementos *nonlinear current-dependent inductor* (TYPE 98 e 96). As curvas de magnetização para essa estrutura foram obtidas conforme [20] e equações 3.18 e 3.21. O anexo 7.12 mostra o levantamento dessas curvas.

Figura 4.24 – Forma de onda da corrente de carga para a Estrutura Assimétrica com dualidade eletromagnética. Type 98 (○), Type 96 (△) e Experimento (□).

Figura 4.25 − *Forma de onda da corrente de carga para a Estrutura Simétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

As Figuras 4.26 e 4.27 mostram a forma de onda da tensão de carga para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.26 – *Forma de onda da tensão na carga para a Estrutura Assimétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

Figura 4.27 – *Forma de onda da tensão na carga para a Estrutura Simétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

Figura 4.28 – Forma de onda da tensão no BCS e RNS para a Estrutura Assimétrica com dualidade eletromagnética. Type 98 (○), Type 96 (△) e Experimento (□).

Figura 4.29 – *Forma de onda da tensão no BCS e RNS para a Estrutura Simétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

As Figuras 4.30 e 4.31 mostram a forma de onda da corrente no BCS para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.30 – *Forma de onda da corrente no BCS para a Estrutura Assimétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

Figura 4.31 – Forma de onda da corrente no BCS para a Estrutura Simétrica com dualidade eletromagnética. Type 98 (\circ), Type 96 (Δ) e Experimento (\Box).

As Figuras 4.32 e 4.33 mostram a forma de onda da corrente no RNS para a Estrutura Assimétrica e Estrutura Simétrica, respectivamente.

Figura 4.32 – *Forma de onda da corrente no RNS para a Estrutura Assimétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

Figura 4.33 – *Forma de onda da corrente no RNS para a Estrutura Simétrica com dualidade eletromagnética. Type 98 (*○*), Type 96 (*∆*) e Experimento (*□*).*

A Tabela 4.3 mostra os valores de corrente e de tensão do sistema obtidos em simulação e experimento.

Regime Permanente								
	Experin	nento	Simulação					
			<i>TYPE 98</i>		<i>TYPE 96</i>			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{RMS})	3,3	3,2	3,1	3,1	3,1	3,1		
V _{Carga} (V _{RMS})	222,0	223,3	220,7	220,4	219,6	219,5		
V _{BCS} (V _{RMS})	14,7	14,8	14,2	14,2	14,9	14,5		
I _{BCS} (A _{RMS})	3,3	3,2	3,1	3,1	3,1	3,1		
I _{RNS} (A _{RMS})	-	-	-	-	-	-		
<u>Transitório</u>								
	Experin	nento	Simulação					
			<i>TYPE 98</i>		<i>TYPE 96</i>			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{PICO})	15,2	14,4	13,7	14,4	13,5	13,9		
V _{Carga} (V _{PICO})	248	252	256	255,2	254,2	256,9		
V _{BCS} (V _{PICO})	139,2	140,8	141,5	143	139,8	146,0		
I _{BCS} (A _{PICO})	126	144	120,5	140,5	132,5	139,3		
I _{RNS} (A _{PICO})	116	120	132,3	144,2	132,2	144,1		
	I	Durante	e um curto - cii	<u>rcuito</u>	I	1		
	Experimento		Simulação					
			<i>TYPE 98</i>		TYPE 96			
	Assimétrica	Simétrica	Assimétrica	Simétrica	Assimétrica	Simétrica		
I _{Carga} (A _{RMS})	7,9	7,9	7,2	7,3	7,2	7,5		
V _{Carga} (V _{RMS})	147,1	135,8	140,0	140,7	139,6	141,5		
V _{BCS} (V _{PICO})	85,9	78,1	77,1	73,8	78,4	73,4		
I _{BCS} (A _{PICO})	76,4	72,1	72,7	70,2	73,7	70,4		
I _{RNS} (A _{PICO})	80,6	77,9	72,2	76,7	75,1	76,8		

Tabela 4.3 – Comparação dos resultados experimentados e simulados com dualidade eletromagnética.

4.6 – Análise do ARMTRS após a remoção do defeito

Como foi visto na seção 2.3.3 do capítulo 2, a resistência de amortecimento tem influência decisiva no desempenho do RNS após a eliminação do defeito sem o desligamento da fonte. Foram feitos experimentos com o sistema teste da Figura 4.2 em regime normal de operação, com o sistema sob a influência de um curto circuito e com a retirada desse defeito. Observou-se nos experimentos que depois da retirada do defeito o RNS da Estrutura Assimétrica saiu de seu estado de saturação, enquanto o RNS da Estrutura Simétrica permaneceu no seu estado de saturação, devido à troca de energia entre o BCS e o RNS.

A Figura 4.34 mostra a forma de onda da corrente no reator naturalmente saturado da Estrutura Assimétrica no instante que precede o defeito, durante o defeito e logo após esse defeito ser extinguido. Já a Figura 4.35 mostra a forma de onda da corrente no RNS da Estrutura Simétrica.

Figura 4.34 – Forma de onda da corrente no RNS para a Estrutura Assimétrica antes, durante e depois da retirada de um defeito – Resultado experimental.

Figura 4.35 – Forma de onda da corrente no RNS para a Estrutura Simétrica antes, durante e depois da retirada de um defeito – Resultado experimental.

Esse comportamento distinto das estruturas depois da remoção do curto é causado pela resistência próprias das bobinas dos RNS's. A Estrutura Assimétrica possui uma resistência de 0,3 Ω que é suficiente para dissipar a troca de energia entre o RNS e o BCS exercendo, assim, função de uma resistência de amortecimento. Já a Estrutura Simétrica possui uma resistência de 0,07 Ω o que é insuficiente para dissipar a troca dessa energia e resultando na não dessaturação do RNS depois da retirada do defeito (o ensaio para a obtenção dessas resistências pode ser visto no Anexo 7.9). Esse mesmo fenômeno foi verificado nas simulações como mostra as Figuras 4.36 e 4.37.

Figura 4.36 – Forma de onda da corrente no RNS para a Estrutura Assimétrica antes, durante e depois da retirada de um defeito – Resultado de Simulação.

Figura 4.37 – Forma de onda da corrente no RNS para a Estrutura Simétrica antes, durante e depois da retirada de um defeito – Resultado de Simulação.

Com o intuito de comprovar que esse fenômeno ocorre devido ao fator de qualidade das bobinas, ou seja, a relação entre a reatância e a resistência, o valor das resistências próprias das boninas das duas estruturas foi trocado.

A Figura 4.38 mostra a forma de onda do RNS para Estrutura Assimétrica com a resistência própria da bobina da Estrutura Simétrica.

Figura 4.38 – Forma de onda da corrente no RNS para a Estrutura Assimétrica com a bobina própria da Estrutura Simétrica. Antes, durante e depois da retirada de um defeito – Resultado de Simulação.

A Figura 4.39 mostra a forma de onda do RNS para Estrutura Simétrica com a resistência própria da bobina da Estrutura Assimétrica.

Figura 4.39 – Forma de onda da corrente no RNS para a Estrutura Simétrica com a bobina própria da Estrutura Assimétrica. Antes, durante e depois da retirada de um defeito – Resultado de Simulação.

Os resultados obtidos e mostrado nas Figuras 4.38 e 4.39 comprovam que esse fenômeno é provocado devido ao fator de qualidade dessas bobinas.

4.7 – Auto-ajuste da tensão do ARMTRS

O efeito da auto-regulação da tensão do ARMTRS pode ser observado na Figura 4.40, onde foi traçado a curva característica $V \times I$ para a tensão medida na carga a jusante do ARMTRS e acorrente medida a montante do mesmo, conforme esquema de ligação apresentada na Figura 4.2.

À medida que a corrente cresce, a tensão na carga também cresce. Verificando-se o efeito da auto-regulação da tensão do ARMTRS. As medições para esse ensaio pode ser visto no Anexo 7.13.

Figura 4.40 – *Curva V x I sob a carga a jusante do ARMTRS.*

4.8 – Resultados obtidos através do programa FEMM

O FEMM (Finite Element Method Magnetics) é um programa que calcula os campos elétricos e magnéticos de uma estrutura utilizando o método de elementos finitos. Este programa é utilizado para a visualização das linhas de fluxo nos protótipos projetados, de modo que se possa averiguar se os resultados obtidos em projetos são próximos dos esperados na prática.

O ARMTRS modelado no FEMM é simulado utilizando os mesmos valores de projeto quanto às dimensões físicas do protótipo e suas características. Ambas as estruturas foram simuladas tanto em regime permanente quanto sob influencia de um defeito.

4.8.1 - Regime Permanente

As estruturas eletromagnéticas do ARMTRS foram simuladas nas condições de regime permanente, caso em que toda a corrente circula praticamente pela bobina linear (RLS), pois, nesse momento a bobina de núcleo saturado (RNS) está operando na região de não saturação. Os valores das correntes são de 0,2 A na bobina com núcleo saturado e de 3,0 A na bobina linear.

A Figura 4.41 mostra as linhas de fluxo e suas direções resultantes da simulação da estrutura ferromagnética do ARMTRS, utilizando as dimensões de projeto, e a Figura 4.42 (b) mostra os valores obtidos para a indução magnética (B) em Tesla e do campo magnético (H) em A/m para a Estrutura Assimétrica.

Figura 4.41 – *Linhas de fluxo da Estrutura Assimétrica após simulação em regime permanente.*

$\begin{array}{l} \mbox{Point: $x=2.2$, $y=12.4$} \\ \mbox{A} = 0.00320505-1*6.87862e-007 \mbox{Wb/m}$ \\ \mbox{[B]} = 0.539221 \mbox{T}$ \\ \mbox{Bx} = -0.00271144+1*1.22706e-007 \mbox{T}$ \\ \mbox{By} = -0.539214+1*1.33498e-006 \mbox{T}$ \\ \mbox{H} = -38.7124 \mbox{A/m}$ \\ \mbox{H} x = -0.194663-1*8.80948e-006 \mbox{A/m}$ \\ \mbox{H} y = -38.7119+1*9.58426e-005 \mbox{A/m}$ \\ \mbox{H} y = -38.7119+1*9.58426e-005 \mbox{A/m}$ \\ \mbox{H} y = -38.7119+1*9.58426e-005 \mbox{A/m}$ \\ \mbox{H} y = -38.7119+1*0.58426e-005 \mbox{A/m}$ \\ \mbox{H} y = -38.719+1*0.58426e-005 \mbox{A/m}$ \\ \mbox{H} y = -38.719+1*0.$	$\begin{array}{l} \mbox{Point: } x=8.1, y=12.5 \\ \mbox{A} &= 0.0154593.1^{*}6.59322e-007 \mbox{ Wb/m} \\ \mbox{ B } &= 0.127524 \mbox{T} \\ \mbox{B} &= 0.127515.1^{*}7.61697e-007 \mbox{T} \\ \mbox{B} &= 0.127515.1^{*}1.22071e-006 \mbox{T} \\ \mbox{ H } &= 11.9081 \mbox{A/m} \\ \mbox{H} &= -0.139931.1^{*}7.11266e-005 \mbox{A/m} \\ \mbox{H} &= 11.9072.1^{*}0.000113989 \mbox{A/m} \\ \mbox{H} &= 8521.99 \mbox{ (rel)} \\ \mbox{MLS} \\ \mbox{J} &= 0 \mbox{MA/m}^2 \\ \end{array}$
Point: x=17.3, y=12.6	Point: x=10, y=21.5
A = 0.00493115-1*6.14901e-007 Wb/m	A = -0.000266845-I*6.45283e-007 Wb/m
B = 0.529972 T	B = 0.417004 T
Bx = 0.00207437+1*2.17393e-008 T	Bx = -0.416958-I*6.69524e-007 T
By = 0.529968 +1*1.52934e-006 T	By = 0.00623977-I*7.88206e-007 T
H = 38.1911 A/m	H = 31.7922 A/m
Hx = 0.149484+1*1.56658e-006 A/m	Hx = -31.78871*5.10442e-005 A/m
Hy = 38.1908+1*0.000110208 A/m	Hy = 0.475718-I*6.00925e-005 A/m
mu_x= 11042.9 (rel)	mu_x= 10437.8 (rel)
RNS	mu_y= 10437.8 (rel)
1-0 MA/m ~ 2	Jugo

Figura 4.42 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica em regime permanente.

De acordo com a Figura 4.42, os valores de indução magnética para o Retorno, RLS, RNS e jugo são 0,539T, 0,127T, 0,523T e 0,417T, respectivamente. Conforme esperado, o RNS não está na sua região de saturação em regime permanente, pois o RNS começa a saturar para uma indução acima de 0,937T.

A Figura 4.43 mostra os valores de corrente, tensão, fluxo, indutância, potência reativa e aparente para a bobina linear. Conforme Simulação do FEMM, obteve-se uma indutância (L_{Gap}) igual a 0.0079H, o que resulta em uma reatância (X_{Gap}) igual a 3,00 Ω . Essa reatância é próxima da reatância calculada para a bobina linear do protótipo que é de 3,2 Ω .

Circuit Name	-
Results Total current = 3 Amps Voltage Drop = 0.336017+1*8.99066 Volts Flux Linkage = 0.0238485-1*6.45666e-007 Webers Flux/Current = 0.00794949-1*2.15222e-007 Henries Voltage/Current = 0.112006+1*2.99689 Ohms Real Power = 0.504025 Watts Reactive Power = 13.486 VAr Apparent Power = 13.4954 VA	

Figura 4.43 – Resultados de Simulação obtidos através do FEMM para a Estrutura Assimétrica em regime permanente.

A Figura 4.44 mostra as linhas de fluxo e suas direções resultantes da simulação da estrutura ferromagnética do ARMTRS, utilizando as dimensões de projeto, e a Figura 4.45 mostra os valores obtidos para a indução magnética (B) em Tesla e do campo magnético (H) em A/m para a Estrutura Simétrica.

Figura 4.44 – Linhas de fluxo da Estrutura Simétrica após simulação em regime permanente.

Figura 4.45 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica em regime permanente.

De acordo com a Figura 4.45 os valores de indução magnética para o RLS, Retorno, RNS e jugo são 0,174T, 0,229T, 0,398T e 0,102T, respectivamente. Conforme esperado, o RNS não está na sua região de saturação em regime permanente, pois o RNS começa a saturar para uma indução acima de 0,937T.

A Figura 4.46 mostra os valores de corrente, tensão, fluxo, indutância, potência reativa e aparente para a bobina linear. Conforme Simulação do FEMM, obteve-se uma indutância (L_{Gap}) igual a 0.0085H, o que resulta em uma reatância (X_{Gap}) igual a 3,2 Ω . Essa reatância é próxima da reatância calculada para a bobina linear do protótipo que é de 3,5 Ω .

Circuit Name	
GAP	-
,	
Results	
Total current = 3 Amps	
Voltage Drop = 0.0651522+I*9.6144 Volts	
Flux Linkage = 0.025503-I*1.40184e-005 Webers	
Flux/Current = 0.008501-I*4.6728e-006 Henries	
Voltage/Current = 0.0217174+I*3.2048 Ohms	
Real Power = 0.0977283 Watts	
Reactive Power = 14.4216 VAr	
Apparent Power = 14.4219 VA	

Figura 4.46 – *Resultados de Simulação obtidos através do FEMM para a Estrutura Simétrica em regime permanente.*

4.8.2 - Durante um defeito

As estruturas eletromagnéticas do ARMTRS também foram simuladas sob a ocorrência de um defeito, nesse momento a bobina de núcleo saturado (RNS) está operando na região de saturação. O valor da corrente de curto é de aproximadamente de 8 A_{RMS}.

A Figura 4.47 mostra as linhas de fluxo e suas direções resultantes da simulação da estrutura ferromagnética do ARMTRS, utilizando as dimensões de projeto, e a Figura 4.48 mostra os valores obtidos para a indução magnética (B) em Tesla e do campo magnético (H) em A/m para a Estrutura Assimétrica.

Figura 4.47 – Linhas de fluxo da Estrutura Assimétrica após simulação durante um defeito.

$\begin{array}{l} \mbox{Point: x=2.5, y=12.5} \\ \mbox{A} = 0.02206141^{=3}.94587e-006 \mbox{Wb/m} \\ \mbox{[B]} = 2.86407T \\ \mbox{Bv} = -0.00153999^{-172}.242499e-007T \\ \mbox{Bv} = -2.8640241^{+2}.00715e-006T \\ \mbox{H} = 1327.12 \mbox{A/m} \\ \mbox{H} = -0.713595^{-170}.000112368 \mbox{A/m} \\ \mbox{Hv} = -1327.1241^{*0}.000930066 \mbox{Hv} = -1327.1241^{*0}.00$	$\begin{array}{l} \mbox{Point: $x=8.1, y=12.9$} \\ \mbox{A} = 0.0865462.1^{+3}.90098e-006 \mbox{Wb/m} \\ \mbox{[B] } = 0.2204867 \\ \mbox{BX} = 2.00437223^{+7}.9106e-0077 \\ \mbox{BY} = 0.217295^{+7}.91066-0077 \\ \mbox{BY} = 0.217295^{+7}.91066525e-0067 \\ \mbox{IH} = 19.2206 \mbox{A/m} \\ \mbox{Hx} = -3.2579^{+7}.685959e-005 \mbox{A/m} \\ \mbox{Hx} = -3.2579^{+7}.685959e-005 \mbox{A/m} \\ \mbox{Hy} = 18.9425^{+7}.0.00258493 \mbox{A/m} \\ \mbox{Hy} = 9128.58 \mbox{(re)} \\ \mbox{J} = 0 \mbox{MA/m}^2 \\ \end{array}$
Point: x = 17.7, y = 11.3 A = 0.0208457-1*3.82347e-006 Wb/m [B] = 3.36789 T Ex = 0.00080116+1*2.05913e-009 T Ey = 3.36789 +1*1.09745e-006 T [H] = 1746.91 A/m rtx = 0.415558+1*1.06806e-006 A/m Hy = 1746.91+1*0.000569241 A/m mu_x = 1534.19 (rel) RNS = 0 MA/m*2	$\begin{array}{l} \mbox{Point: $x=7.9$, $y=3.8$} \\ \mbox{A} = 0.03995711^{*3}.92458e-006 Wb/m$ \\ \mbox{ B = 2.14946 T$} \\ \mbox{Bx = 2.079551^{*1}.53732e-006 T$} \\ \mbox{By = 0.5437441^{*4}.54153e-006 T$} \\ \mbox{H = 731.807 A/m$} \\ \mbox{H = 731.807 A/m$} \\ \mbox{Hx = 708.005.1^{*0}.000523397 A/m$} \\ \mbox{Hy = 185.1231^{*0}.00154621 A/m$} \\ \mbox{mu $x= 2337.35 (rel)$} \\ \mbox{mu $x= 2337.35 (rel)$} \\ \mbox{Jugo J} \\ \mbox{Jugo J} \\ \mbox{Hy = 0 MA/m^2} \end{array}$

Figura 4.48 – Valores de indução magnética obtidos através do FEMM para a Estrutura Assimétrica durante um defeito.

De acordo com a Figura 4.48 os valores de indução magnética para o Retorno, RLS, RNS e jugo são 2,86T, 0,22T, 3,37T e 2,157T, respectivamente. Conforme esperado, o RNS está na sua região de saturação durante um defeito, pois o RNS começa a saturar para uma indução acima de 0,937T.

A Figura 4.49 mostra as linhas de fluxo e suas direções resultantes da simulação da estrutura ferromagnética do ARMTRS, utilizando as dimensões de projeto, e a Figura 4.50 mostra os valores obtidos para a indução magnética (B) em Tesla e do campo magnético (H) em A/m para a Estrutura Simétrica.

Figura 4.49 – Linhas de fluxo da Estrutura Simétrica após simulação durante um defeito.

$\begin{array}{l} \mbox{Point: $x=0.7$, $y=18.7$} \\ \mbox{A} = -0.03458461^{+5}.21791e-006 \mbox{Wb/m} \\ \mbox{[B]} = 0.442469T \\ \mbox{Bx} = 0.009776541^{+3}.23978e-005 T \\ \mbox{By} = 0.442361-1^{*0}.000187686 T \\ \mbox{[H]} = 33.2541 \mbox{A/m} \\ \mbox{Hx} = 0.7347641^{*0}.00243488 \mbox{A/m} \\ \mbox{Hy} = 33.2461^{*0}.0141057 \mbox{A/m} \\ \mbox{Hy} = 10588.3 \mbox{(re)} \\ \mbox{RLS} \\ \mbox{J} = 0 \mbox{MA/m}^2 \end{array}$	$\begin{array}{l} \mbox{Point: $x=8.4$, $y=18.4$} \\ \mbox{A} &= 0.02424361^{+}2.69513e-006 \mbox{Wb/m} \\ \mbox{[B] } = 2.103751^{-} \\ \mbox{Bx} &= -0.00847641+1^{\pm}1.22447e-005 \mbox{T} \\ \mbox{By} &= -2.10373+1^{\pm}6.76197e-005 \mbox{T} \\ \mbox{H} &= 692.721 \mbox{A/m} \\ \mbox{Hx} &= -2.79514+1^{\pm}0.00403775 \mbox{A/m} \\ \mbox{Hy} &= -693.716+1^{\pm}0.0022979 \mbox{A/m} \\ \mbox{Hy} &= -693.716+1^{\pm}0.0222979 \mbox{A/m} \\ \mbox{Hy} &= -2413.23 \mbox{ (rel)} \\ \mbox{mu}_{x} &= 2413.23 \mbox{ (rel)} \\ \mbox{Retorno} \\ \mbox{J} &= 0 \mbox{MA/m}^2 \end{array}$
Point: x=18.2, y=19.3 A = 0.0519409-1*5.20255e-006 Wb/m [B] = 3.86067 T Bx = -0.000318048+1*5.64736e-007 T By = 3.86067+1*9.1338e-006 T [H] = 2157.46 A/m Hx = -0.177734+1*0.000315591 A/m Hy = 2157.46+1*0.00510433 A/m mu_x= 1424 (rel) mu_x= 1424 (rel) RNS 1= 0 MA/m^2	Point: x=12.8, y=30.2 A = 0.02581834*5.0796e-006 Wb/m B = 1.85414T Bx = -1.83268-1*1.41395e-005 T By = 0.28127341*7.66446e-006 T H = 486.63 A/m Hx = -480.998-1*0.00371098 A/m Hy = -73.8217+1*0.00201158 A/m mu_x= 3032.04 (rel) Jugo $mu_x= 3032.04 (rel) Jugo$ $l= 0.M4 m^{2}$

Figura 4.50 – Valores de indução magnética obtidos através do FEMM para a Estrutura Simétrica durante um defeito.

De acordo com a Figura 4.50, os valores de indução magnética para o RLS, Retorno, RNS e jugo são 0,44T, 2,10T, 3,86T e 1,85T, respectivamente. Conforme esperado, o RNS está na sua região de saturação durante um defeito, pois o RNS começa a saturar para uma indução acima de 0,937T.

CAPITULO 5 CONSIDERAÇÕES FINAIS

5.1 – Conclusão

As considerações expostas nesse trabalho apontam as dimensões e o peso do ARMTRS como elementos restritivos para a aplicação desse dispositivo nos moldes propostos, ou seja, instalados em plena via pública. Sob esse enfoque, a conjugação do RLS e do RNS numa estrutura eletromagnética única parece, numa análise expedita, uma proposta atraente, pois se espera, nesse caso, uma redução dos parâmetros de interesse. Apesar de o peso da estrutura ferromagnética para o alimentador de ITA-03 ser quase o dobro da estrutura para o alimentador de SLM-01C3 exposta no capítulo 3, ainda assim é inferior se comparado ao peso de somente um regulador monofásico que é de 1650 kg [21], equivalente a um pouco mais do que o dobro do peso de uma unidade monofásica do ARMTRS. Além da vantagem em relação ao peso, o ARMTRS além de regular a tensão na barra de carga mais distantes do alimentador, ainda tem como benefício adicional a limitação da corrente de curto-circuito e o controle do afundamento e elevação da tensão que se limita apenas a regular a tensão a jusante.

O dimensionamento do ARMTRS foi realizado considerando todos os componentes que compõe esse equipamento, no que tange à mudança da arquitetura, a modelagem do ARMTRS continuou sendo realizada considerando-se as características de seus componentes básicos os quais fazem parte o RNS, RLS, BCS e a resistência de amortecimento. Foram abrangidas propostas distintas para dois alimentadores com características diversificadas e em princípio, ambas as opções apresentadas são perfeitamente factíveis, cada uma apresentando atributos favoráveis, mas também oferecendo determinados inconvenientes para a aplicação pretendida.

As análises do ARMTRS para sistemas elétricos trifásicos de distribuição, apresentadas neste trabalho, reforçam as vantagens da utilização do equipamento em regime permanente de operação, tendo em vista os resultados obtidos para a regulação das tensões nas barras localizadas depois dele. Durante a operação em regime transitório, nos casos de curto-circuito, a corrente foi desviada do banco de capacitores série, circulando pelo reator saturado. Nessas condições, verificou-se que mesmo depois da remoção do

defeito o reator saturado continuou operando em sua região de saturação. Contudo, esse fenômeno foi eliminado com a utilização de resistência de amortecimento, conforme mostrado no capítulo 2 o que evidencia o papel decisivo dessa resistência na dessaturação do RNS.

No que se refere ao BCS o uso de células padrão tem em consideração o fato que a fabricação de unidades especiais mesmo que não representem um custo elevado será um empecilho a sua aplicação. O seu uso que não seja em grande número enfrentará dificuldades, pois os fabricantes dificilmente se disporão a enfrentar o desafio uma fez que as quantidades encomendadas não justificariam uma adaptação no processo de fabricação. As células padrão de 400kvar e 300kvar, por exemplo, tem reatâncias consideráveis o que demanda não só o uso de várias células capacitivas como também sejam compensadas com grandes reatores lineares para que o processo de auto-regelação seja atingido.

A metodologia inovadora proposta para o projeto do ARMTRS requer, como é de praxe em todo processo de pesquisa, uma apurada verificação em laboratório que ratifique ou mesmo aponte eventuais desvios nos procedimentos estabelecidos nos estudos prévios. Com esse intuito, protótipos em tamanho reduzido de ambas as estruturas ferromagnéticas (assimétrica e simétrica) foram construídas e testadas em laboratório. No entanto, o tipo de estrutura a ser utilizada na rede CELPE, ou seja, a disposição do núcleo de retorno central ou em um dos extremos da unidade, dependerá da economicidade do projeto e da interação com o fabricante quanto a melhor forma e experiência construtiva disponíveis para a fabricação da estrutura. Os dados obtidos em laboratório mostram que o uso do ARMTRS em um sistema elétrico não compromete seu desempenho em regime permanente e nem sob a ocorrência de um defeito. Quando acontece um curto-circuito próximo à carga, o fenômeno transitório produz um perfil de corrente e tensão típicos para reatores nãolineares e os valores registrados não revelam maiores preocupações para com os níveis atingidos. Observou-se que por meios dos dados experimentais foi possível ressaltar a eficiência operacional do ARMTRS quanto ao processo da regulação da tensão.

Tendo em vista todos os resultados exposto neste trabalho remata-se que o ARMTRS é uma alternativa bastante viável e promissora para a regulação de tensão e apresenta outras vantagens se comparado ao uso de reguladores de tensão contribuindo, assim, para a qualidade do suprimento de energia elétrica.

5.2 - Sugestões para trabalhos futuros

Seguem algumas sugestões para trabalho futuros com a finalidade de aprimoramento para a utilização do ARMTRS.

- Desenvolver o dimensionamento do ARMTRS utilizando a tecnologia do ferro amorfo;
- Desenvolver pesquisas visando a utilização de filtros com o intuito de reduzir as variações brusca de tensão na rede devido a presença do RLS em algumas arquitetura do ARMTRS;
- Estender a pesquisa para a aplicação do ARMTRS para sistemas de transmissão partindo do 69kV e 230kV que com o crescimento da rede básica atenderá cargas radialmente com topologia típica dos alimentadores de distribuição atual.

5.3 – Publicações

 M. A. Carvalho Jr., A. G. de Souza , L. A. M. da Fonte, L. H. Nery, M. M. da Silva, F. E. F. Freitas, J. D. B. Vilar, W.B Santos, S. F. da Silva, S. M. Ferreira, "Dados experimentais de um Auto-Regulador Magnético de Tensão para Redes Primárias de Distribuição a Reator Saturado", IX CBQEE – 2011.

APÊNDICE

6.1 - Configuração do sistema teste - SLM-01C3

Tabela 6.1 – Características do Sistema de distribuição – 13,8kV – SLM-01C3.Dados do Sistema Elétrico

Ten Impe	são Equival edância Red	ente do Sis uzida do Si	tema (V) stema (Ω)	11.537,00 0,1809 + j1,455							
		Dados da	Rede (Modelo π	: Equivalen	ite)						
	1. Condutor 95mm ² Cu										
I _{ADM} (A)	GMR	R (Ω)	$\mathbf{R}_0(\Omega)$	$\mathrm{X}_{0}\left(\Omega ight)$	$\mathbf{R}_{1}\left(\Omega ight)$	$X_1(\Omega)$					
430,00	0,04750	0,23460	0,91220	2,07020	0,23460	0,42510					
2. Condutor 4/0 CAA Al											
I _{adm} (A)	GMR	R (Ω)	$R_0(\Omega)$	$X_0(\Omega)$	$\mathbf{R}_{1}(\mathbf{\Omega})$	$X_1(\Omega)$					
340,00	0,04750	0,36790	0,54560	1,93450	0,36790	0,47160					
		3.	Condutor 2/0 C	AA AI							
I _{ADM} (A)	GMR	R (Ω)	$\mathbf{R}_0(\Omega)$	$\mathbf{X}_{0}\left(\Omega ight)$	$\mathbf{R}_{1}\left(\Omega ight)$	$X_{1}\left(\Omega ight)$					
270,00	0,03500	0,55610	0,73390	1,19720	0,55610	0,50910					
		4.	Condutor 1/0 C	AA Al							
I _{ADM} (A)	GMR	R (Ω)	$\mathbf{R}_0(\Omega)$	$\mathbf{X}_{0}\left(\Omega ight)$	$\mathbf{R}_{1}\left(\Omega ight)$	$X_1(\Omega)$					
230,00	0,02500	0,69610	0,87370	1,98110	0,69610	0,51820					
		5	5. Condutor 4 CA	A Al							
IADM (A)	GMR	R (Ω)	$\mathbf{R}_0(\Omega)$	$\mathbf{X}_{0}\left(\Omega\right)$	$\mathbf{R}_{1}(\mathbf{\Omega})$	$X_1(\Omega)$					
140,00	0,01250	1,59700	1,77470	1,98300	1,59700	0,52000					
	I	1 1		1		I					
			Dados das Car	gas							
Barra	Fase	e A	Fase B	6	Fas	se C					
•	R (Ω)	X(Ω)	R (Ω)	X(Ω)	R (Ω)	X(Ω)					
3	1327,7	562,8	1264,4	536,0	1201,2	509,2					
4	2112,7	895,6	2012,1	853,0	1911,5	810,3					

5	5195,2	2202,3	4947,8	2097,4	4700,4	1992,6
7	6719,1	2848,3	6399,1	2712,7	6079,2	2577,0
9	211,6	89,7	201,5	85,4	191,4	81,2
11	3344,1	1417,6	3184,9	1350,1	3025,7	1282,6

6.2 - Roteiro em ATP do sistema SLM-01C3 sem ARMTRS

BEGIN NEW DATA CASE	
C C Generated by ATPDRAW junho, terça-feira 14, 2011 C A Bonneville Power Administration program C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006	
ALLOW EVEN PLOT FREQUENCY C ************************************	3
<pre>C 3436789012345678901234567890112345678901123456789011234567890110000000000000000000000000000000000</pre>	_
C ************************************)
C))
C ************************************))
C ************************************)
C ************************************)
C ************************************)
C ************************************))
C)

C11B			
		3184.9	0
C11C		2025 7	0
CIIC		5025.7	0
C11A		1403.	0
C11B		1350 1	0
0110		1000.1	0
CIIC		1282.6	0
С			
C *****	* * * * * * * * * * * * * * * * * *	***** Dofoito no Donno 11 ***************************	* * *
		Defeito na Balla II	
B11A	CURTOA	1.	1
B11B	CURTOR	1	1
DIID			-
BIIC	CURTOC	1.	T
С			
C *****	* * * * * * * * * * * * * * * * * *	C_{2} $(0, 2)$ $(0, 2)$ $(1, 2)$ $(1, 2)$	* * *
0		(0, 324 Mil)	_
-1B8A	B10A	.2988 .6775 .8 1.00	0
-2B8B	B10B	2381 1772 2 1 0 0	0
2000	5105	.2001 .1772 2. 1. 0.0	0
-3B8C	BIUC		0
С			
○ *****	*****	C_{2} $A/0$ C_{2} A_{1} C_{2} $(3 600 \text{ km})$ $************************************$	* * *
			_
-1B10A	B11A	6.54867.3173 .8 1.00	0
-2B10B	B11B	5,89291,9188 2, 1,00	0
20100	D110		õ
-3BI0C	BIIC		0
С			
C *****	* * * * * * * * * * * * * * * * * * *	Cabo 4/0 CAA A] Cu (0 750 km) ***********************************	* * *
1=0-	202		~
-1B8A	вуа	1.3311.4872 .8 1.00	0
-288B	В9В	1.1976 .39 2. 1.00	0
2000	202	1.13.0 .03 L. 1. V V	~
-3B8C	B9C		0
С			
0 *****	* * * * * * * * * * * * * * * * * * *	* Caba Q5mm2 Cu (1 246 km) ***********************************	***
C ~~~~~		Cabo 951002 Cu (1, 546 km) a a a a a a a a a a a a a a a a a a a	
-1B2A	B3A	1.22782.7865 .8 1.00	0
-2B2B	B3B	3158 5722 2 1 1 0 0	0
2020	D0D	.5150 .5722 2.1 1.00	0
-3B2C	B3C		0
С			
○ *****	*****	***** (22702 22 2272 2 ************************	* * *
C		Carga na Darra S	_
C3A		1327.6	0
CBB		1264 4	0
002			0
030		1201.2	0
C3A		562.8	0
C3B		536	0
CDD			0
C3C		509.2	0
С			
0 *****	* * * * * * * * * * * * * * * * * * *	*****	***
		Calya na balla 4	_
C4A		2112.7	0
C4B		2012.1	0
0.12			
C4C		1011 F	0
C 4 T		1911.5	0
C4A		1911.5 895.6	0
C4A C4B		1911.5 895.6 852 9	0
C4B		1911.5 895.6 852.9	0 0 0
C4A C4B C4C		1911.5 895.6 852.9 810.3	0 0 0 0
C4A C4B C4C C		1911.5 895.6 852.9 810.3	0 0 0 0
C4A C4B C4C C		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0
C4A C4B C4C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0
C4A C4B C4C C C ***** C5A	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 ***
C4A C4B C4C C C ***** C5A C5B	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 ***
C4A C4B C4C C C ***** C5A C5B	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	000000000000000000000000000000000000000
C4A C4B C4C C C ***** C5A C5B C5C	 ********************************	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	0 0 0 0 0 0 0 0 0 0 0 0 0 0
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C *****		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B	**************************************	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B	**************************************	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B C9C		1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9B C9C C9C C	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B C9C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B C9C C C *****	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9B C9C C9B C9C C7A	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C5A C5B C5C C5A C9A C9B C9C C9B C9C C9B C9C C9B C9C C7A C7B	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	
C4A C4B C4C C C ***** C5A C5B C5C C5A C5B C5C C C ***** C9A C9B C9C C9A C9B C9C C C ***** C7A C7B C7C	****	1911.5 895.6 852.9 810.3 ***** Carga na Barra 5 *********************************	

C7A			2848.	. 3						0
С7В			2712.	. 7						0
C7C			2577.	.1						0
С										
C *********	* * * * * * * * * *	* * * * * * * * * * *	Chaves	s do ci	rcuito) *****	* * * * * * * *	*****	* * * * * * *	* * * * * * *
/SWITCH	2NC Trale		do N	То	SZWE/C		+ 1700			
C \ II I/\ II	********	5e /<10p/1	ue /\ ** Chat	re da B	arra 1	// IUL/	****** rype	~ ******	******	* * * * * * *
POA BIA		01	10		arra i					1
POB B1B		.01	10.							1
POC B1C		.01	10.							1
C *******	* * * * * * * * *	* * * * * * * * * *	Chave	da Car	ga 3 *	*****	* * * * * * *	*****	*****	* * * * * * *
вза сза		-1.	10.							1
B3B C3B		-1.	10.							1
B3C C3C		-1.	10.							1
C *******	* * * * * * * * * *	* Chave on	de será	à coloc	ado o	ARMTRS	* * * * * *	*****	******	* * * * * * *
B6_1A B6_	2A	-1.	10.							1
B6_1B B6_	2В	-1.	10.							1
B6_1C B6_	2C	-1.	10.							1
C ********	* * * * * * * * * *	********	Chave	do Def	eito *	******	******	*****	*****	* * * * * * *
CURTOA		1.	15.							1
CURTOB		15.	15.							0
CURTOC	ا الله الله الله الله الله الله الله ال		15.			باد باد باد باد باد با	ل بار بار بار بار بار	ب بلد بلد بلد بلد ب	و باو باو باو باو با	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1	chave 10	da Car	ga 9 ^		~ ~ ^ ^ ^ /			1
BYA CYA		-1.	10.							1
		-1. -1	10.							1
C ********	* * * * * * * * * *	⊥• *******	Chave	da Car	a 11	*****	* * * * * * *	*****	******	⊥ * * * * * * *
B11A C11	Δ	-1	10	uu cui	ga 11					1
B11B C11	B	-1.	10.							1
B11C C11	C	-1.	10.							1
C ********	- * * * * * * * * * *	 * * * * * * * * * *	Chave	da Car		*****	* * * * * * *	*****	*****	******
B7A C7A		-1.	10.		<u> </u>					1
в7в С7в		-1.	10.							1
в7С С7С		-1.	10.							1
C *******	* * * * * * * * * *	* * * * * * * * * *	Chave	da Car	ga 5 *	*****	* * * * * * *	*****	*****	* * * * * * *
B5A C5A		-1.	10.							1
B5B C5B		-1.	10.							1
B5C C5C		-1.	10.							1
C *******	* * * * * * * * * *	*********	Chave	da Car	ga 4 *	*****	******	*****	*****	******
B4A C4A		-1.	10.							1
B4B C4B		-1.	10.							1
B4C C4C		-1.	10.							Ţ
C +++++++++	++++++++++	 **	Fault				*****			******
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	^^ Tensao	- Equiv	alente	ae m	leveniin	~ ~ ~ ~ ~ ~ /			~ ^ ^ ^ ^ ^ ^ ^ ^
7500RCE	Ampl >	(Freq)	(Phaco)	/ᲚᲘᲐ८	Δ1	<u>></u> с т	1 ><	TOTAR	г >< т ^о	STOP >
14FONTEA 0	11537	60	(111450)	10/ <	ΠI	/ I	1 / 1	10171(-1	5
14FONTEB 0	11537.	60.	-1	20.				-	-1.	5.
14FONTEC 0	11537.	60.	1	20.				-	-1.	5.
/OUTPUT										
B1A B1B	B1C I	B4A B4B	B4C	B5A	B5B	B5C	B6 1A	B6 1B	B6 1C	B7A
в7в в7с	B11A 1	B11B B11C	вза	взв	B3C	B10A	в10в	B10C	B9A	B9B
B9C B2A	B2B I	B2C B8A	B8B	B8C						
BLANK BRANC	H									
BLANK SWITC	Н									
BLANK SOURC	Ε									
BLANK OUTPU	Г									
BLANK PLOT										
BEGIN NEW D	ATA CASE									
BLANK										

	ela 0.2 – Card	acteristicas ac) Sistema ae d	ustribuiçao –	13, 6KV - 11P	4-05.		
		Dados	do Sistema El	létrico				
Ten	são Equivaler	te do Sistema		11.664,55				
Impe	dância Reduz	ida do Sistema	0.	,3245 +j2,292	27			
					0			
		Dados da Re	de (Modelo π	Equivalente)				
		1. Cor	ndutor 2/0 CA	A Al				
I _{ADM} (A)	GMR	R (Ω)	$R_0(\Omega)$	$X_0(\Omega)$	$\mathbf{R}_{1}(\mathbf{\Omega})$	$X_1(\Omega)$		
270,00	0,03500	0,55610	0,73390	1,19720	0,55610	0,50910		
	1	2. Cor	ndutor 1/0 CA	A Al		1		
I (A)	CMP	P (O)	P . (O)	V . (O)	P . (0)	X . (0)		
230 00	0.02500	0.69610	0.87370	1 98110	0.69610	0.51820		
250,00	0,02500	0,09010	0,07570	1,70110	0,07010	0,51020		
		3. Co	ndutor 35mn	n² Al				
$\mathbf{I}_{ADM}(\mathbf{A})$	GMR	R (Ω)	$\mathbf{R}_0(\Omega)$	$\mathbf{X}_{0}\left(\Omega ight)$	$\mathbf{R}_{1}\left(\Omega ight)$	$X_{1}(\Omega)$		
168	0,01750	1,11300	1,29080	2,72030	1,1300	0,32120		
		D	adae dae cara	ne				
		Da	autos uas carga	as				
Barra	Fas	se A	Fas	se B	Fas	Fase C		
	R (Ω)	X(Ω)	R (Ω)	X(Ω)	R (Ω)	Χ(Ω)		
2	923,6	391,5	879,6	372,9	835,6	354,2		
4	1598,5	677,6	1522,4	645,4	1446,3	613,1		
5	725,7	307,6	691,1	293,0	656,6	278,3		
7	1339,2	567,7	1275,4	540,7	1211,7	513,6		
8	754,9	320,0	718,9	304,8	683,0	289,5		
9	1635,5	693,3	1557,6	660,3	1479,8	627,3		
10	1962.6	832.0	1869.2	792.4	1775.7	752.7		

6.3 - Configuração do sistema teste - ITA-03

Tabola 62 Característic do Sistem a da distribuição 13.8kV ITA 03

6.4 - Roteiro em ATP do sistema ITA-03 sem ARMTRS

BEGIN NEW DA	TA CASE									
C Generated by ATPDRAW outubro, sábado 29, 2011 C A Bonneville Power Administration program C by H. K. Høidalen at SEfAS/NTNU - NORWAY 1994-2006 C										
ALLOW EVEN P	LOT FRE	QUENCY								
C dT >< Tm	ax >< X	opt >< C	opt >							
6.667E-7	1.	60.	60.							
300	50	1	1	1	0	0		1	0	
C 1		2	3	4	5		6		7	8
C 3456789012 /BRANCH	3456789	01234567	89012345	678901234	567890123	345678	9012	34567	890123456	57890

C < n1 >< n2 > <ref1><ref< th=""><th>2>< R >< I, ><</th><th>C ></th><th></th><th></th></ref<></ref1>	2>< R >< I, ><	C >		
C < n1 > c n2 > cref1> cref	$2 \times R \rightarrow A \rightarrow C$	B ><1	Lena><><>0	
FONTEAPOA	32452 2927	D / 1		0
FONTERDOR	32/52 2027			ů O
FONTEDFOD	32452.2927			0
	·JZ4JZ·Z9Z/	0	1 0 0	0
-IBIA BZA	./3391.1972	.0	1.00	0
	.5561 .5991	∠.⊥	1.00	U
-3BIC B2C				U
-1B2A B3A	.2936 .4789	.8	1.00	0
-2B2B B3B	.2224 .2396	2.1	1.00	0
-3B2C B3C				0
-1B3A B4A	1.39793.1698	.8	1.00	0
-2B3B B4B	1.1138 .8291	2.1	1. 0 0	0
-3B3C B4C				0
-1B4A B5A	2.18424.9527	.8	1.00	0
-2B4B B5B	1.74021.2955	2.1	1.00	0
-3B4C B5C				0
-1B5A B6A	1,74743,9622	. 8	1.00	0
-2B5B B6B	1.39221.0364	2.1	1.00	0
-385C 86C	1.000001		1.00	0
-187 14 87 24	2621 5943	8	1 0 0	ñ
-287 18 87 28	2088 1555	2 1	1 0 0	0
-387 1C 87 2C	.2000 .1000	∠•⊥	±• 0 0	0
	3 50000 1005	0	1 0 0	0
207 20 D00	3.30220.1223 2 0542 1046	• 8	1.0.0	U
-7R1 7R RØR	2.8342.1246	∠.⊥	L. U U	0
-3B7_2C_B8C				0
-1B8A B9A	1.31052.9716	.8	1.00	0
-2B8B B9B	1.0441 .7773	2.1	1.00	0
-3B8C B9C				0
-1B9A B10A	1.41992.9923	.8	1.00	0
-2B9B B10B	1.2243 .3533	2.1	1. 0 0	0
-3B9C B10C				0
B10A CURTOA	1.			1
B10B CURTOB	1.			1
B10C CURTOC	1.			1
C2A	923.58			0
C2B	879.6			0
C2C	835.62			0
C2A	391 52			0
C2B	372 88			0
	354 24			0
	JJ4.24 1600 6			0
C4A C4D	1500.0			0
C4B	1522.4			0
C4C	1446.3			U
C4A	6//.63			0
C4B	645.36			0
C4C	613.09			0
C5A	725.68			0
C5B	691.12			0
C5C	656.56			0
C5A	307.62			0
C5B	292.97			0
C5C	278.32			0
C7A	1339.2			0
С7В	1275.4			0
C7C	1211.7			0
C7A	567.7			0
C7B	540.67			ů Ú
C7C	513 64			0 0
C8A	754 85			0
C8B	718 91			0
C8C	682 96			0
C87	210 00			0
	J17.77			U
	304./3			U
	289.51 1625 5			0
CYA	1033.5			U
С9В	1557.6			0

C9C		1479.8								0
C9A		693.	31							0
C9B		660	.3							0
C9C		627.	29							0
C10A		1962.6								0
C10B		1869 2								0
C10C		1775 7								0
C100		0.21	0.0							0
CIUA		031.	90							0
CIOB		792.	36							0
C10C		752.	/4							0
/SWITCH										
C < n 1>< n 2	>< Tclose > <t< td=""><td>op/Tde ><</td><td>Ie</td><td>><vf 0<="" td=""><td>CLOP ></td><td>>< typ</td><td>e ></td><td></td><td></td><td></td></vf></td></t<>	op/Tde ><	Ie	> <vf 0<="" td=""><td>CLOP ></td><td>>< typ</td><td>e ></td><td></td><td></td><td></td></vf>	CLOP >	>< typ	e >			
POA B1A	.01	10.								1
POB B1B	.01	10.								1
POC B1C	.01	10.								1
CURTOA	1.	15.								0
CURTOB	15.	15.								0
CURTOC	1.5 .	15.								0
B2A C2A	-1	10								1
B2B C2B	_1	10.								1
BZD CZD		10.								1
BZC CZC	-1.	10.								1
B4A C4A	-1.	10.								1
B4B C4B	-1.	10.								T
B4C C4C	-1.	10.								1
b5a c5a	-1.	10.								1
B5B C5B	-1.	10.								1
B5C C5C	-1.	10.								1
B7_2A C7A	-1.	10.								1
B7 2B C7B	-1.	10.								1
B7 ² C C7C	-1.	10.								1
B8A C8A	-1.	10.								1
B8B C8B	-1	10								1
BSC CSC	-1	10								1
DOC COC	_1	10.								1
DOD COD	-1.	10.								1
B9B (9B	-1.	10.								1
B9C (9C	-1.	10.								1
BIUA CIUA	-1.	10.								Ţ
BIOB CIOB	-⊥.	10.								T
B10C C10C	-1.	10.								1
B6A B7_1A	-1.	10.								1
B6B B7_1B	-1.	10.								1
B6C B7 1C	-1.	10.								1
/SOURCE										
C < n 1><>< A	mpl. >< Freq	. > <phase< td=""><td>/T0><</td><td>A1</td><td>><</td><td>T1 ></td><td>< TSTA</td><td>RT ><</td><td>TSTOP</td><td>></td></phase<>	/T0><	A1	><	T1 >	< TSTA	RT ><	TSTOP	>
14FONTEA 0 11	644.556	60.						-1.		5.
14FONTEB 0 11	644.556	60	120.					-1.		5.
14FONTEC 0 11	644 556	60	120					-1		5
	011.000									••
P17 P1P	B1C B3A	B3B B3C	B27	B 2B	BJC	B 5 7	B5B	B2C		
DIA DID			DZA	DZD	DZC	DJA	DOD	DOC	DAN	
D4D D4C	D/_ZA D/_ZD	B/_ZC BOA	DOD	BOC	БУА	סעם	BAC	DOA	DOD	
BOC BIUA	BIOR BIOC									
BLANK BRANCH										
BLANK SWITCH										
BLANK SOURCE										
BLANK OUTPUT										
BLANK PLOT										
BEGIN NEW DAT	A CASE									
BLANK										
i i i i i i i i i i i i i i i i i i i										

6.5 - Roteiro em ATP do sistema SLM-01C3 com ARMTRS

BEGIN NEW DATA CASE С -----C Generated by ATPDRAW setembro, terca-feira 27, 2011 C A Bonneville Power Administration program C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006 С _____ ALLOW EVEN PLOT FREQUENCY C dT >< Tmax >< Xopt >< Copt > 6.667E-7 3. 60. 60. 300 300 50 1 2 С 8 C 3456789012 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><><>0 C _____ FONTEAPOA .1809 1.455 0 .1809 1.455 FONTERPOR 0 FONTECPOC .1809 1.455 0 С _____ .58651.3311 .8 1.00 .1508.2733 2.1 1.00 -1B1A B2A 0 -2B1B B2B 0 -3B1C B2C 0 C ------.9888 2.244 .8 1.00 .2543 .4608 2.1 1.00 0 -1B2A B4A -2B2B B4B 0 -3B2C B4C 0 ſ _____ .9093.2229 .8 1.00 .6129.7857 2. 1.00 -1B4A B5A 0 -2B4B .6129 .7857 B5B 0 -3B4C B5C 0 _____ С. -----.1732 .2825 .8 1.00 -1B5A B6A 0 -2B5B 2. B6B 1.21671.1139 1.00 0 -3B5C B6C 0 C _____ .3354.5471.81.00.2541.23272.1.00 -1CAP2A B7A 0 -2CAP2B B7B 0 -3CAP2C B7C 0 C _____ .3844.8717.81.00.3063.2282.1.00 -1B7A B8A 0 -2B7B B8B 0 -3B7C B8C 0 С _____ -1B8A B10A .2988 .6775 .8 1.00 0 -2B8B B10B .2381 .1772 2. 1.00 0 B10C -3B8C 0 С -----_____ ___ -1B10AB11A6.54867.3173.81.00-2B10BB11B5.89291.91882.1.00 0 0 -3B10C B11C 0

C	
С ************************************	* * * * * * * * * * * * * *
-188 B9A 1 3311 4872 8 1 0 0	0
-2000 DOD 11076 30 2 1 0 0	0
	0
	0
C 1,346 km)	
-1BZA B3A 1.22/82./865 .8 1.00	0
-2B2B B3B .3158 .5722 2.1 1.00	0
-3B2C B3C	0
C	
C ************************************	* * * * * * * * * * * * * *
C3A 1327.6	0
СЗВ 1264.4	0
C3C 1201.2	0
C3A 562.8	0
C3B 536	0
	0
509.2	0
C CAR OLIO 7	
C4A ZIIZ./	0
	0
C4C 1911.5	0
C4A 895.6	0
C4B 852.9	0
C4C 840.3	0
с	
C ************************************	* * * * * * * * * * * * * *
C5A 5195.2	0
С5в 4947.8	0
C5C 4700.4	0
C5a 2202 3	0
C5B 2097 4	0
	0
1992.3	0
Carga ha barra 9	•
C9A 212.1	U
C9B 202.	0
C9C 191.9	0
C9A 89.7	0
С9В 85.4	0
C9C 81.1	0
C	
C ************************************	* * * * * * * * * * * * * *
C7A 6719.1	0
С7в 6399.1	0
C7C 6079.1	0
C7A 2848.3	0
с7в 2712.7	ů N
c7c 2577 1	0
······································	*****
C C COLLA CALVA LA DALLA LI COMMANA CALVANA	^
011D 2104 0	0
UIIB 3184.9	0
0110 3025.7	0
C11A 1403.	0
C11B 1336.1	0
C11C 1269.3	0
C	
C ******** Resistência de amortecimento 1 (cobre) - Reator Linear	· 1 *********
B6A IND1 A 0.11	0
B6B INDI ^B 0.11	0
B6C INDI ⁻ C 0.11	0
с	
C ******* Resistência de amortecimento 2 (cobre) - Reator Linear	2 *******
RES A IND2 A 0.01	0
RES B IND2 B 0.01	0
	0

	RES_C IND2_C	0.01	0
C	****** Reator IND1_ARES_A IND1_BRES_B IND1_CRES_C	Linear 1 - Limitador da Corrente de Curto-circuito ******* 3.0 3.0 3.0 3.0	333
c	**************** IND2_ACAP1_A IND2_BCAP1_B IND2_CCAP1_C	**************************************	***** 0 0 0
СС	**************************************	**************************************	****** 3 3
C	**************************************	************* Defeito na Barra 11 ********************************	****** 1 0 0
C	**************** CHRCCACHCCA CHRCCBCHCCB CHRCCCCHCCC	********** Resistência entre chaves ************************************	******** 0 0 0
C	******** Res: RES_A REA_A RES_B REA_B RES_C REA_C	istência de amortecimento (cobre) - Reator Saturado ****** 10. 10. 10.	****** 3 0 0
C 98	**************************************	************************************	*****

1.8426	7.5699							
2 0839	7 6127							
2.0000	7.0127							
2.4368	1.0000							
2.7639	7.6982							
3.3781	7.7410							
3.8607	7.7838							
4 6065	7 9265							
4.0005	7.0203							
5.2646	/.8693							
6.1421	7.9121							
6.5808	7.9548							
7.6776	7.9976							
8 7744	8 0404							
12 7027	0.0115							
13.7827	8.2115							
27.5655	8.3825							
55.1310	8.4253							
9999	9							
C								_
~ ~ +++++++++++++++++++++++++++++++++++	* * * * * * * * * * * *	Dester	Coturado	Eaco D	*******	* * * * * * * * * * *	*******	*
		RealOI	Sacurado	газе в				1
98REA_B CAP2B		0.0	0.0					T
0.0658	1.7107							
0.0750	2.1384							
0 0847	2 5661							
0 0043	2.0001							
0.0943	2.9950							
0.1031	3.4214							
0.1119	3.8491							
0.1167	4.2768							
0.1206	4,4906							
0 1250	1 7045							
0.1239	4.7045							
0.1303	4.9183							
0.1378	5.1322							
0.1457	5.3460							
0.1553	5.5598							
0 1689	5 7737							
0.1009	5.7757							
0.1821	5.9875							
0.2053	6.2014							
0.2369	6.4152							
0 2523	6 5007							
0.2609	6 5062							
0.2090	0.0000							
0.2939	6.6718							
0.3246	6.7573							
0.3641	6.8429							
0 4212	6 9284							
0.1212	7 0140							
0.4730	7.0140							
0.5703	1.0995							
0.6581	7.1850							
0.8116	7.2706							
0.8994	7.3133							
0 9871	7 3561							
1 1107	7 2000							
T.TTQ/	1.3909							
1.2503	/.4416							
1.4302	7.4844							
1.5574	7.5272							
1 8426	7 5699							
2 0 0 2 0	7.6107							
2.0039	7.0127							
2.4568	1.6000							
2.7639	7.6982							
3.3781	7.7410							
3.8607	7.7838							
4 6065	7 8265							
T.000J	7 9 6 9 2							
5.2646	1.8693							
6.1421	7.9121							
6.5808	7.9548							
7.6776	7.9976							
8 77/1	8 0404							
0.//44	0.0115							
13./82/	0.2115							
27.5655	8.3825							
55.1310	8.4253							

	9999						
C							
	**************	Reator	Saturado	Fase C **	*******	* * * * * * * * * * * * *	****
98REA_C CAP2	1 7107	0.0	0.0				T
0.0050	2 1384						
0.0847	2.5661						
0.0943	2.9938						
0.1031	3.4214						
0.1119	3.8491						
0.1167	4.2768						
0.1206	4.4906						
0.1259	4.7045						
0.1303	4.9183						
0.1378	5.1322						
0.1457	5.3460						
0.1553	5.5598						
0.1689	5 9875						
0.1021	6 2014						
0.2000	6.4152						
0.2523	6.5007						
0.2698	6.5863						
0.2939	6.6718						
0.3246	6.7573						
0.3641	6.8429						
0.4212	6.9284						
0.4738	7.0140						
0.5703	7.0995						
0.6581	7.1850						
0.8116	7.2706						
0.0994	7.3133						
1 1187	7.3989						
1.2503	7.4416						
1.4302	7.4844						
1.5574	7.5272						
1.8426	7.5699						
2.0839	7.6127						
2.4568	7.6555						
2.7639	7.6982						
3.3781	7.7410						
3.8607	7.7838						
4.6065	7.8265						
5.2040	7.8093						
6 5808	7.9121						
7.6776	7.9976						
8.7744	8.0404						
13.782	7 8.2115						
27.5655	5 8.3825						
55.1310	8.4253						
	9999						
С							
C *********	* * * * * * * * * * * * * * * * *	**** Cha	aves do c	ircuito **	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * *
/SWITCH	2\<	on / Tala `			× +	<	
C ********	∠/< TCLOSE ><'I' **************	op/Tae /	n Ie Thavo do T	Parra 1 **	<pre>>< cype ************************************</pre>	<pre></pre>	* * * * *
	_1	10	Juave Ud .	Dalla 1 "*			0
POB BIR	⊥ • _1	10 10	•				0
POC B1C	-1.	10					0
C ********	- • * * * * * * * * * * * * * *	**** Cha	ave da Ca	rga 3 ****	******	* * * * * * * * * * * * *	****
B3A C3A	-1.	10	•	-			0
B3B C3B	-1.	10					0
B3C C3C	-1.	10					0
C ********	* * * * * * * * * * * * * * * *	**** Cha	ave da Ca	rga 9 ****	*******	* * * * * * * * * * * *	* * * * *
B9A C9A	-1.	10					0

C9B 10. B9B -1. Ο B9C C9C -1. 10. 0 -1. B11A C11A 10. 0 -1. -1. 10. 10. B11B C11B 0 B11C C11C 0 *** 10. 10. B7A C7A -1. 0 B7B C7B -1. Ο 10. -1. B7C C7C 0 -1. 10. B5A C5A 0 B5B C5B -1. 10. 0 B5C C5C -1. 10. 0 C ***************************** Chave da Carga 4 ******************************** **** B4A C4A -1. 10. 0 -1. 10. -1. 10. B4B C4B 0 B4C C4C 0
 RES_A CAP2A
 10.
 1.E3

 RES_B CAP2B
 10.
 1.E3

 RES_C CAP2C
 10.
 1.E3
 0 0 0 CURTOACHRCCA -1. 0 2.2 .233333 -1. -1. С CURTOACHRCCA 0 15. C CURTOACHRCCA 0 CURTOBCHRCCB -1. -1. 15. 15. 0 0 1.2 15. 15. 15. CHCCA 1 CHCCB 15. 0 15. 15. CHCCC 0 C -----/SOURCE C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP > 5. 14FONTEA 0 11537. 60. -1. 11537. -120. -1. 14FONTEB 0 60. 5. 14FONTEC 0 11537. 60. 120. -1. 5. /OUTPUT B1BB1CB4AB4BB4CB5AB5BB5CB6AB6BB7CB11AB11BB11CCAP2BCAP1_BRES_BCAP2CCAP1_CB3A B6C B1A B7A B3B B3C B7B B10A B10B B10C B9A B9B B9C CAP2A CAPI ARES A RES C B2A B2B B2C B8A B8B B8C BLANK BRANCH BLANK SWITCH BLANK SOURCE BLANK OUTPUT BLANK PLOT BEGIN NEW DATA CASE BLANK

6.6 - Roteiro em ATP do sistema ITA-03 com ARMTRS

BEGIN NEW DATA CASE С -----_____ C Generated by ATPDRAW novembro, quinta-feira 3, 2011 C A Bonneville Power Administration program C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006 C _____ ALLOW EVEN PLOT FREQUENCY C dT >< Tmax >< Xopt >< Copt > 3. 60. 60. 6.667E-7 300 50 1 1 1 0 0 1 0 1 2 3 4 5 7 С 6 8 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0 С -----.32452.2927 FONTEAPOA 0 FONTEBP0B .32452.2927 0 FONTECPOC .32452.2927 0 С. ----------.7342.0095 .8 1.00 0 -1B1A B2A -2B1B B2B -3B1C B2C .5563 .4902 2.1 1.00 0 0 С _____ _ _ -1B2A B3A .7342.0095 .8 .4 0 0 0 -2в2в .4 0 0 взв .5563 .4902 2.1 0 -3B2C B3C 0 C _____ _____ _ _ -1B3A B4A .87372.0188 .8 1.6 0 0 0 .6961 .4995 2.1 1.6 0 0 -2B3B B4B 0 -3B3C B4C 0 C -----___ -1B4A B5A .87372.0188 .8 2.5 0 0 0 -2B4B B5B .6961 .4995 2.1 2.5 0 0 0 -3B4C B5C 0 С ----____ _ _ -1B5A B6A .87372.0188 .8 2.00 0 -2B5B B6B .6961 .4995 2.1 2.00 0 -3B5C B6C 0 С ----.87372.0188 .8 .3 0 0 .6961 .4995 2.1 .3 0 0 -1CHCARAB7A 0 -2CHCARBB7B 0 -3CHCARCB7C 0 C ------1B7A B8A .87372.0188 .8 4.1 0 0 0 .6961 .4995 2.1 4.1 0 0 -2B7B B8B 0 -3B7C B8C 0 С -----___ .87372.0188 .8 1.5 0 0 -1B8A B9A 0 -2B8B B9B .6961 .4995 2.1 1.5 0 0 0 -3B8C B9C 0 C _____ _____ ___ -1B9AB10A1.29082.7203.81.10-2B9BB10B1.113.32122.11.10 0 0 -3B9C B10C 0 С -----923.58 C2A 0 C2B 879.6 0 C2C 835.62 0 C2A 391.52 0 C2B 372.88 0 354.24 0 C2C С ----_____ _____ C4A 1598.5 0 C4B 1522.4 0 C4C 1446.3 0

		677 62		
CIA		6/5.26		
C4B		645.36		
C4C		013.09		
****	****	F	·	****
C57		725 68	alla J	
CSR		601 12		
		691.12		
050		000.00		
C5A		307.62		
C5B		292.97		
C5C		278.32		
* * * *	*******	********* Carga na E	arra 7 *********************************	* * * *
C7A		1339.2		
С7В		1275.4		
C7C		1211.7		
C7A		567.7		
C7B		540.67		
C7C		513.64		
* * * *	******	********* Carga na E	arra 8 *********************************	* * * ;
C8A		754.85		
C8B		718.91		
C8C		682.96		
C8A		319.99		
C8B		304.75		
C8C		289.51		
* * * *	****	********* Carga na B	arra 9 *********************************	* * *
C9A		1635.5		
С9В		1557.6		
C9C		1479.8		
C9A		693.31		
C9B				
CAC		627 29		
* * * *	****	********* Carga na B	arra 10 ***********************************	* * * :
C10A	L	1962.6		
С10в	5	1869.2		
C10C		1775.7		
C10A		831 98		
C10B		792 36		
CIOC	4	752.30		
	, 			
****	******	***** Resistência d	lo RLS – LCC *********************************	* * *
RIND	1ATNDA	. 05		
RIND	1 RINDR	05		
RIND	1CINDC	05		
****	******	***** RT.Q -	- LCC **********************************	* * *
	CAPIA	19		
TNDP	CAPIR	19		
INDC	CAPIC	19		
		±,.		
****	******	**************************************	****	***
CAP1	A CAP2-A	3.5 2007	2000	
CAP1	B CAP2-R	30	2000	
CAP1	C CAP2-C	20	2000	
		J2		
****	*****	* Resistância de Ama	rtecimento do RNS ***********************************	***
	A REA-A	20		
CDD1		20.		
CAP1		∠∪.		
CAP1 CAP1	C REA-D	20		

0.0760	4.0608						
0.0858	4.8730						
0.0956	5.6851						
0.1044	6.4973						
0.1133	7.3094						
0 1182	8 1216						
0 1222	8 5277						
0.1276	0.0277						
0.1270	0.9330						
0.1320	9.3398						
0.1396	9./459						
0.1476	10.1520						
0.1573	10.5581						
0.1711	10.9642						
0.1844	11.3702						
0.2080	11.7763						
0.2400	12.1824						
0.2556	12.3448						
0.2733	12.5073						
0.2978	12.6697						
0 3289	12 8321						
0.3689	12.0021						
0.3009	12.5540						
0.4207	12.2104						
0.4800	13.3194						
0.5//8	13.4819						
0.6667	13.6443						
0.8222	13.8067						
0.9111	13.8879						
1.0000	13.9692						
1.1333	14.0504						
1.2667	14.1316						
1.4489	14.2128						
1.5778	14.2940						
1.8667	14.3752						
2 1111	14 4564						
2.1111	14 5277						
2.4009	14.5577						
2.8000	14.0189						
3.4222	14.7001						
3.9111	14./813						
4.6667	14.8625						
5.3334	14.9437						
6.2223	15.0250						
6.6667	15.1062						
7.7778	15.1874						
8.8889	15.2686						
13.9627	15,5935						
27 9254	15 9183						
55 8508	15 9996						
999	9						
	, 						
C *********	****	** DN	IS - Faso	₽ ******	******	* * * * * * * * * * * *	*****
98REA-B CAD2-P		0 0		۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰			1
JORDA-B CAFZ-B	2 2106	0.0	0.0				Ţ
0.0867	3.2400						
0.0760	4.0608						
0.0858	4.8730						
0.0956	5.6851						
0.1044	6.4973						
0.1133	7.3094						
0.1182	8.1216						
0.1222	8.5277						
0.1276	8.9338						
0.1320	9.3398						
0.1396	9.7459						
0.1476	10.1520						
0 1573	10 5581						
0.1711	10 06/2						
0.1044	11 2702						
U.1044	11 7762						
0.2080	LL.//63						

0.2400	12.1824	
0.2556	12.3448	
0.2733	12.5073	
0.2978	12,6697	
0.3289	12.8321	
0 3689	12 9946	
0.4267	13 1570	
0.4207	13 319/	
0.4000	12 4010	
0.5778	13.4819	
0.0007	13.0443	
0.8222	13.806/	
0.9111	13.8879	
1.0000	13.9692	
1.1333	14.0504	
1.2667	14.1316	
1.4489	14.2128	
1.5778	14.2940	
1.8667	14.3752	
2.1111	14.4564	
2.4889	14.5377	
2.8000	14.6189	
3.4222	14.7001	
3.9111	14.7813	
4.6667	14.8625	
5.3334	14.9437	
6.2223	15.0250	
6.6667	15.1062	
7 7778	15 1874	
8 8889	15 2686	
13 9627	15 5935	
27 0254	15 0103	
55 0500	15 0006	
55.0500	13.9990	
9	999	
0		
C		
C	 * * * * * * * * * * * * * * * * *	**** RNS - Fase C ***********************************
C	 *******************************	**** RNS - Fase C ***********************************
C C ************ 98REA-C CAP2-(0.0667	************************ C 3.2486 4.0600	**** RNS - Fase C ***********************************
C C ************ 98REA-C CAP2-(0.0667 0.0760 0.0760	**************************************	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0858	**************************************	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1133	**************************************	**** RNS - Fase C ***********************************
C C *************** 98REA-C CAP2 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182	**************************************	**** RNS - Fase C ***********************************
C C *************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222	**************************************	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.3398	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.3398 9.7459	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476	2 3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.3398 9.7459 10.1520	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844	**************************************	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400 0.2556	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400 0.2556 0.2733	**************************************	**** RNS - Fase C ***********************************
C C ************** 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400 0.2556 0.2733 0.2978	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400 0.2556 0.2733 0.2978 0.3289	**************************************	**** RNS - Fase C ***********************************
C C ************* 98REA-C CAP2-0 0.0667 0.0760 0.0858 0.0956 0.1044 0.1133 0.1182 0.1222 0.1276 0.1320 0.1396 0.1476 0.1573 0.1711 0.1844 0.2080 0.2400 0.2556 0.2733 0.2978 0.3289 0.3689	**************************************	**** RNS - Fase C ***********************************
C C ************************************	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570	**** RNS - Fase C ***********************************
C C ************************************	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570	**** RNS - Fase C ***********************************
C C ************************************	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570 13.3194	**** RNS - Fase C ***********************************
C C ************************************	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570 13.3194 13.4819	**** RNS - Fase C ***********************************
C C ************************************	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570 13.3194 13.6443 12.0057	**** RNS - Fase C ***********************************
C	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570 13.3194 13.4819 13.6443 13.8067	**** RNS - Fase C ***********************************
C	3.2486 4.0608 4.8730 5.6851 6.4973 7.3094 8.1216 8.5277 8.9338 9.7459 10.1520 10.5581 10.9642 11.3702 11.7763 12.1824 12.3448 12.5073 12.6697 12.8321 12.9946 13.1570 13.3194 13.4819 13.6443 13.8067 13.8879	**** RNS - Fase C ***********************************
C	**************************************	**** RNS - Fase C ***********************************
C C ************************************	**************************************	**** RNS - Fase C ***********************************

1 4489	14 2128		
1 5778	14 2940		
1 8667	14 3752		
2 1111	14.5752		
2 1889	14.4304		
2.4005	14 6189		
3 4222	14 7001		
3 9111	14 7813		
1 6667	14.8625		
5 333/	14.0025		
6 2223	15 0250		
6 6667	15.0250		
0.0007	15.1002		
0 0000	15 2696		
12 0625	15 5025		
27 9254	15 9183		
55 8508	15 9996		
55.0500	13.3330		
C			
C *********	 ************	 ۱۵	
B10A CURT	0A	1	1
B10B CURT	OB	1	
B10C CURT	00	1	ů O
C			•
C *********	* * * * * * * * * * * * * * *	Resistênc	ia entre Chaves *********************************
RESCOARETO	CA	01	
RESCORRETO	CB	01	Ŭ O
RESCORETO	CC	01	ů O
C		••=	~
C ********	*****	Chaves	do circuito ************************************
/SWITCH		0114700	
C < n > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >	2>< Telose > <top< td=""><td>/Tde ><</td><td>Te ><vf clop="">< type ></vf></td></top<>	/Tde ><	Te > <vf clop="">< type ></vf>
C ********	****	Chave no	ponto P0 ***********************************
POA B1A	-1.	10.	- 0
POB B1B	-1.	10.	0
POC B1C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 2 ***********************************
B2A C2A	-1.	10.	9
B2B C2B	-1.	10.	0
B2C C2C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 4 ***********************************
B4A C4A	-1.	10.	0
B4B C4B	-1.	10.	0
B4C C4C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 5 ***********************************
B5A C5A	-1.	10.	0
B5B C5B	-1.	10.	0
B5C C5C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 7 ***********************************
B7A C7A	-1.	10.	0
в7в С7в	-1.	10.	0
B7C C7C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 8 ***********************************
B8A C8A	-1.	10.	0
B8B C8B	-1.	10.	0
B8C C8C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 9 ***********************************
B9A C9A	-1.	10.	0
B9B C9B	-1.	10.	0
B9C C9C	-1.	10.	0
C ********	* * * * * * * * * * * * * * * *	Chave na	Carga 10 ***********************************
B10A C10A	-1.	10.	0
B10B C10E	-1.	10.	0
B10C C10C	-1.	10.	0
C ********	********* Chave	em série	a montante do ARMTRS ************************
B6A RINI	1A -1.	10.	1
B6B RINI	1B -1.	10.	0

```
10.
 B6C
     RIND1C
              -1.
                                                         0
 С
 CAP2-ACHCARA
              -1.
                      10.
                                                         1
               -1.
 CAP2-BCHCARB
                      10.
                                                         0
 CAP2-CCHCARC
              -1.
                     10.
                                                         0
****
 CAP1B CAP2-B 10. 1.E3
                                                         0
              10.
 CAP1C CAP2-C
                     1.E3
                                                         0
            10.
                    1.E3
 CAP1A CAP2-A
                                                         0
* * *
 CURTOARESCCA 1.2
CURTOBRESCCB 15.
CURTOCRESCCC 15.
                    15.
                                                         0
                     15.
                                                         0
 CURTOCRESCCC
              15.
                     15.
                                                        0
-1.
                                                        0
 RETCCA
                  2.2
 RETCCB
              15.
                      15.
                                                         0
 RETCCC
              15.
                      15.
                                                         0
/SOURCE
С -----
          ------
 C
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14FONTEA 0 11644.556 60.
                                                -1.
                                                     5.
                                                -1.
                                                        5.
                   60.
14FONTEB 0 11644.556
                        -120
14FONTEC 0 11644.556
                  60.
                         120.
                                                -1.
                                                        5.
С -----
                                               _____
                                                     _ _ _ _ _ _
/OUTPUT
 B1A
    B1B B1C B3A B3B B3C B2A B2B B2C B5A B5B B5C B4A

        B4C
        B7A
        B7B
        B7C
        B6A
        B6B
        B6C
        B9A
        B9B
        B9C
        B8A

        B10A
        B10B
        B10C
        CAP2-BCAP1B
        CAP2-CCAP1C
        CAP2-ACAP1A

 B4B
                                                    B8B
 B8C
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
```

6.7 – Análise do sistema SLM-01C3 em regime permanente senoidal de operação ao longo dos anos

Figura 6.1 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 1.

Figura 6.2 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) – SLM-01C3 – Ano 2.

Figura 6.3 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 3.

Figura 6.5 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 5.

Figura 6.7 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 7.

Figura 6.4 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 4.

Figura 6.6 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 8,5km (\Box) - SLM-01C3 - Ano 6.

Figura 6.8 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 8,5km (\Box) – SLM-01C3 – Ano 8.

Figura 6.9 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 1.

Figura 6.11 - Forma de onda das tensões no Ponto $PO(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 3.

Figura 6.13 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 5.

6.8 – Análise do sistema ITA-03 em regime permanente senoidal

Figura 6.10 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 2.

Figura 6.12 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 4.

Figura 6.14- Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 6.

Figura 6.15 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 7.

Figura 6.17 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 9.

Figura 6.16 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 8.

Figura 6.18 - Forma de onda das tensões no Ponto $P0(\circ)$ e na Barra 14,5km (\Box) –ITA-03 – Ano 10.

6.9 - Análise das diferentes arquiteturas - SLM-01C3

Figura 6.19 - Forma de onda da tensão no BCS para a Arquitetura ARMTRS – B (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.20 – Forma de onda da corrente no RNS principal para a Arquitetura ARMTRS – B (antes, durante e depois de um defeito) – SLM01C3.

Figura 6.21– Forma de onda da tensão no BCS para a Arquitetura ARMTRS – C (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.23 - Forma de onda da tensão no BCS para a Arquitetura ARMTRS – D (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.25 - Forma de onda da tensão no BCS para a Arquitetura ARMTRS – E (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.22 – Forma de onda da corrente no RNS para a Arquitetura ARMTRS – C (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.24 – Forma de onda da corrente no RNS principal para a Arquitetura ARMTRS – D (antes, durante e depois de um defeito) – SLM-01C3.

Figura 6.26 - Forma de onda da corrente no RNS principal para a Arquitetura ARMTRS – E (antes, durante e depois de um defeito) – SLM-01C3.

6.10 – Roteiro em ATP da Estrutura Assimétrica com elemento 98 e sem dual eletromagnético

```
BEGIN NEW DATA CASE
С -----
                     _____
C Generated by ATPDRAW abril, terça-feira 26, 2011
C A Bonneville Power Administration program
C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006
С _____
C dT >< Tmax >< Xopt >< Copt >
 1.E-6 .5 60. 60.
500 1 1 1
                          1 0
                    1
                                      0
                                           1
                                                 0
/TACS
TACS HYBRID
/TACS
90CARG
                                                      1.E3
90rea
                                                      1.E3
1REA 1 +REA
                                      1.
 1.
            1.
1REA 2 +CARG
                                      1.
    1.
            1.
/BRANCH
C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0
                   .06
 FONT EQUIV
                                                        0
 EQUIV R1
                         5.5
                                                        3
                     .3
                                                        0
 R1
     TND
    CAP
                         3.2
                                                        3
 TND
 CAP CARG
                         2.22E5
                                                        3
98REA CARG
                                                        3
                    0.0 0.0
         0.0087
0.0188
0.0319
    0.0325
    0.0551
    0.0806
           0.0421
    0.0990
    0.1258
           0.0571
           0.0690
0.0841
    0.1499
    0.1838
           0.0933
    0.2093
           0.1004
    0.2333
    0.2941
           0.1154
          0.1324
0.1449
0.1586
    0.3917
    0.5090
    0.8640
           0.1697
    1.3080
    1.9937
           0.1823
           0.1957
    2.8987
           0.2056
0.2116
    3.6340
    4.2420
           0.2207
    5.3025
    6.2499
           0.2295
    6.7448
           0.2334
           0.2408
    7.9325
           0.2476
    9.0779
           0.2530
0.2603
    10.0394
    11.6655
    13.2209
            0.2657
    15.3278
            0.2693
            0.2727
    17.0246
             0.2755
    20.2909
```

23.44410.278126.58320.279931.02320.2816 9999 REA .3 R2 1 325. REA CARG 1 CARG 72. 3 DEF 25.25 3 R3 R4 3 .001 REA 1 1.E6 2 REA 2 1.E6 2 /SWITCH C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type > CAP R2 -1. 1.E3 CARG R3 .0321 1.E3 0 .0321 0 -1. R4 DEF .25 0 /SOURCE C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP > 14FONT 0 311.7 60. 60REA_2 0 -1. 1.E3 1.E3 60REA 1 0 1.E3 /OUTPUT R1 CAP CARG BLANK TACS BLANK BRANCH BLANK SWITCH BLANK SOURCE BLANK OUTPUT BLANK PLOT BEGIN NEW DATA CASE BLANK

6.11 – Roteiro em ATP da Estrutura Simétrica com elemento 98 e sem dual eletromagnético

```
BEGIN NEW DATA CASE
С -----
C Generated by ATPDRAW abril, terça-feira 26, 2011
C A Bonneville Power Administration program
C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006
С _____
C dT >< Tmax >< Xopt >< Copt >
 1.E-6 .50 60. 60.
500 1 1 1
                    1 0
                              0
                1
                                  1
                                       0
/TACS
TACS HYBRID
/TACS
90CARG
                                          1.E3
90rea
                                          1.E3
1REA 1 +REA
                              1.
 -
1.
          1.
1REA 2 +CARG
                              1.
   1.
          1.
/BRANCH
C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><><>0
```

FONT EQUIV		.06							0
EQUIV R1		-	5.5						3
R1 IND		.3							0
IND CAP			3.5						3
CAP CARG			2.22	2E5					3
98REA CARG		0.0	0.0						3
0.0226	0.0117								
0.0424	0.0330								
0.0509	0.0481								
0.0650	0.0661								
0.0778	0.0836								
0.0962	0.1003								
0.1174	0.1138								
0.1584	0.1285								
0.3959	0.1470								
1.0605	0.1581								
1 8849	0 1719								
2 8563	0 1844								
3 9309	0.1099								
5 7022	0.1902								
7 6356	0.2103								
10 6474	0.2334								
10.04/4	0.2502								
12.0100	0.2079								
20.3616	0.2809								
27.0074	0.28//								
33.7663	0.2914								
9999		2							1
RZ REA		.3							1
REA CARG		325.							1
CARG		72.							3
DEF		25.25							3
R3 R4		.001							3
REA_1		1.E6							2
REA_2		1.E6							2
/SWITCH									
C < n 1>< n 2>< T	close > <to< td=""><td>p/Tde >·</td><td>< Ie</td><td>><vf <="" td=""><td>CLOP ></td><td>>< ty</td><td>pe ></td><td></td><td></td></vf></td></to<>	p/Tde >·	< Ie	> <vf <="" td=""><td>CLOP ></td><td>>< ty</td><td>pe ></td><td></td><td></td></vf>	CLOP >	>< ty	pe >		
CAP R2	-1.	1.E3							0
CARG R3	.0441	1.E3							0
R4 DEF	-1.	0.25							0
/SOURCE									
C < n 1><>< Ampl.	>< Freq.	> <pha< td=""><td>se/T0><</td><td>A1</td><td>><</td><td>Τ1</td><td>>< TSTA</td><td>RT >< TSTOP</td><td>· ></td></pha<>	se/T0><	A1	><	Τ1	>< TSTA	RT >< TSTOP	· >
14FONT 0 31	1.7	60.						-1. 1	.E3
60REA 2 0								1	.E3
60REA 1 0								1	.E3
/OUTPUT									
R1 CAP CAR	G EOUIV								
BLANK TACS	~								
BLANK BRANCH									
BLANK SWITCH									
BLANK SOURCE									
BLANK OUTPUT									
BLANK PLOT									
BEGIN NEW DATA CA	SE								
BLANK									

6.12 – Roteiro em ATP da Estrutura Assimétrica com elemento 96 e sem dual eletromagnético

```
BEGIN NEW DATA CASE
C -----
C Generated by ATPDRAW maio, domingo 1, 2011
C A Bonneville Power Administration program
```

154

C ------C dT >< Tmax >< Xopt >< Copt > 60. 60. 1.E-6 .5 500 1 . 1 1 1 1 0 1 1 3 2 С 8 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0 FONT EOUIV .06 0 EOUIV R1 5.5 3 0 IND .3 R1 IND CAP 3.3 3 2.22E5 CAP CARG 3 R2 REA .3 1 CARG 72. 3 25.25 3 DEF .001 R3 3 R4 R3 R4 96REA CARG 0.0 0.0 3 -30.7876 -0.2816 -26.3477 -0.2799 -23.2086 -0.2781 -20.0554 -0.2755 -16.7890 -0.2727 -15.0922 -0.2693 -0.2657 -12.9854 -11.4300 -0.2603 -9.8039 -0.2530 -0.2476 -8.8423 -7.6970 -0.2408 -6.5092 -0.2334 -6.0143 -0.2295 -5.0670 -0.2207 -4.0065 -0.2116 -3.3984 -0.2056 -2.6632 -0.1957 -1.7582 -0.1823 -1.0724 -0.1697 -0.1586 -0.6284 -0.2735 -0.1449 -0.1561 -0.1324 -0.1154 -0.0586 -0.1004 0.0022 0.0263 -0.0933 0.0517 -0.0841 0.0857 -0.0690 0.1097 -0.0571 0.1366 -0.0421 0.1550 -0.0319 0.1804 -0.0188 0.2030 -0.0087 0.0087 0.2681 0.0188 0.2907 0.3161 0.0319 0.3345 0.0421 0.0571 0.3614 0.3854 0.0690 0.0841 0.4194 0.4448 0.0933 0.4689 0.1004 0.1154 0.5297 0.6272 0.1324 0.1449 0.7446 0.1586 1.0995 1.5435 0.1697 2.2293 0.1823 0.1957 3.1343
```
3.86950.20564.47760.21165.53810.22076.48540.22956.98030.23348.16810.24089.31340.2476
                  0.2476
      9.3134
                  0.2530
0.2603
      10.2750
      11.9011
                    0.2657
      13.4565
      15.5633
                   0.2693
                   0.2727
      17.2601
      20.5265
                    0.2755
      23.6797
                     0.2781
      26.8188
31.2587
                    0.2799
                    0.2816
            9999
/SWITCH
C < n 1>< n 2>< Tclose ><Top/Tde >< \ Ie \ ><Vf/CLOP >< type >
  CAP R2 -1. 1.E3
CARG R3 .0321 1.E3
                                                                                          0
                                                                                          0
  R4
       DEF
                      -1.
                                  .25
                                                                                          0
/SOURCE
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14FONT 0 311.7 60. -1. 1.E3
/OUTPUT
 R1
        CAP CARG
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
```

6.13 – Roteiro em ATP da Estrutura Simétrica com elemento 96 e sem dual eletromagnético

BEGIN NEW DATA CAS	SE							
C Generated by ATH C A Bonneville Pow C by H. K. Høidale	PDRAW maio, ver Administ en at SEfAS/	doming ration NTNU -	o 1, 20 program NORWAY	11 1994-2006				
C dT >< Tmax ><	Xopt >< Cop	t >						
1.E-6 .5	60.	60.						
500 1	1	1	1	0	0	1	0	
C 1	2	3	4	5	6		7	8
C 3456789012345678	390123456789	0123456	7890123	45678901234	45678901	234567	890123456	57890
/BRANCH								
C < n1 >< n2 > <ret< td=""><td>El><ref2>< R</ref2></td><td></td><td>>< C</td><td>></td><td></td><td></td><td></td><td></td></ret<>	El> <ref2>< R</ref2>		>< C	>				
C < n1 >< n2 > <ret< td=""><td>f1><ref2>< R</ref2></td><td>. >< A</td><td>>< B 3</td><td>><leng><><</leng></td><td>>0</td><td></td><td></td><td></td></ret<>	f1> <ref2>< R</ref2>	. >< A	>< B 3	> <leng><><</leng>	>0			
FONT EQUIV		.06						0
EQUIV R1		5	.5					3
R1 IND		.07						0
IND CAP		3	.5					3
CAP CARG			2.22E	5				3
R2 REA		.07						1
CARG		72.						3
DEF	25	.25						3
R3 R4		001						3
96REA CARG		0.0 0	.0					3
-33.5958	-0.2914							
-26.8368	-0.2877							
-20.1910	-0.2809							
-12.6403	-0.2679							

```
-10.4769 -0.2582
-7.4650 -0.2354
-5.6127 -0.2183
      -3.7604
                 -0.1982
      -2.6857
                 -0.1844
      -1.7143
                 -0.1719
                 -0.1581
      -0.8899
      -0.2254
                  -0.1470
                -0.1285
      0.0122
      0.0532
                -0.1138
      0.0744
                -0.1003
      0.0928
                 -0.0836
      0.1055
                 -0.0661
      0.1197
                 -0.0481
                -0.0330
      0.1281
      0.1479
                -0.0117
      0.1932
                0.0117
                0.0330
      0.2130
      0.2215
                 0.0481
                0.0661
      0.2356
                0.0836
      0.2483
      0.2667
                0.1003
                0.1138
      0.2879
                0.1285
0.1470
      0.3289
      0.5665
                0.1581
     1.2311
     2.0554
                0.1719
     3.0268
                0.1844
                0.1982
0.2183
      4.1015
      5.9538
                0.2354
      7.8062
                0.2582
0.2679
      10.8180
      12.9814
                 0.2809
      20.5322
      27.1780
                  0.2877
      33.9369
                  0.2914
           9999
/SWITCH
C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
 CAP R2 -1. 1.E3
CARG R3 .0441 1.E3
                                                                             0
                                                                              0
       DEF
                  -1.
                             .25
 R4
                                                                             0
/SOURCE
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14FONT 0 311.7
                         60.
                                                                 -1. 1.E3
/OUTPUT
       CAP
 R1
             CARG
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
```

6.14 – Roteiro em ATP da Estrutura Assimétrica com elemento 98 e com dual eletromagnético

```
BEGIN NEW DATA CASE
C -----
C Generated by ATPDRAW maio, segunda-feira 9, 2011
C A Bonneville Power Administration program
C by H. K. Høidalen at SEFAS/NTNU - NORWAY 1994-2006
C -----
```

C dT >< Tmax ><	< Xopt >< C	:opt >						
1.E-6 .5	- 60.	⁻ 60.						
500 1	1	1	1	0	0	1	0	
/TACS								
TACS HYBRID								
/TACS								
90CAP								1.E3
1IND 1 +CAP					1.			
- 1.								
	1.							
90IND R								1.E3
1IND R1 +IND R					1.			
- <u> </u>								
	1.							
90CARG	±•							1 E 3
$1 \text{ IND } \text$					1			1.10
					±•			
1.	1							
OODEA	1.							1 10 2
1DEA 1 DEA					1			1.60
IREA_I +REA					1.			
1.	1							
0.0 TND	1.							1
JIND 2					1			т.ЕЗ
IIND_3 +IND					1.			
1.								
	1.							
C 1	2	3	4	5		6	7	8
C 34567890123456	78901234567	8901234	56789012	345678901	23456789	012345678	9012345	67890
/BRANCH								
C < n1 >< n2 > <re< td=""><td>ef1><ref2><</ref2></td><td>R >< 1</td><td>L >< C</td><td>></td><td></td><td></td><td></td><td></td></re<>	ef1> <ref2><</ref2>	R >< 1	L >< C	>				
C < n1 >< n2 > <re< td=""><td>ef1><ref2><</ref2></td><td>R >< 2</td><td>A >< B</td><td>><leng><</leng></td><td>:><>0</td><td></td><td></td><td></td></re<>	ef1> <ref2><</ref2>	R >< 2	A >< B	> <leng><</leng>	:><>0			
FONT FONT R		.06		_				0
FONT RIND R			5 5					3
FONT KIND K			0.0					
CAP REA		325.	0.0					3
CAP REA		325.	0.0					3 3
CAP REA IND_R IND CAP CARG		325. .3	2.22	E5				3 3 3
CAP CARG	***** Re	325. .3	2.22	E5 ******	****	* * * * * * * * *	* * * * * * *	3 3 3 *****
CAP REA IND_R IND CAP CARG C ************************************	***** Re	325. .3 eatância	2.22 do Jugo 2 4	E5 ******	* * * * * * * *	* * * * * * * *	* * * * * * *	3 3 :***** 3
CAP REA IND_R IND CAP CARG C ************************************	***** Re	325. .3 atância	2.22 do Jugo 2.4	E5 ********	*****	* * * * * * * * * *	* * * * * * *	3 3 :**** 3 :****
CAP REA IND_R IND CAP CARG C ************************************	**** Re	325. .3 eatância	2.22 do Jugo 2.4 UGO 2 **	E5 ********	*****	* * * * * * * * * *	* * * * * * *	3 3 :**** 3 :****
CAP REA IND_R IND CAP CARG C ************************************	**** Re	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * *	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CAP REA IND_R IND CAP CARG C ************************************	******* Re *****************************	325. .3 atância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * *	3 3 ***** 3 :***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ********* Re 0.0104 0.0226 0.0283	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ************** 0.0104 0.0226 0.0383 0.0505	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	******	******	* * * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ************** 0.0104 0.0226 0.0383 0.0505	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	******	******	* * * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******** Re ************* 0.0104 0.0226 0.0383 0.0505 0.0685 0.0685	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	*****	******	******	3 3 ***** * ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ************* 0.0104 0.0226 0.0383 0.0505 0.0685 0.0828	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	*****	******	* * * * * * * *	3 3 ***** * ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ************ 0.0104 0.0226 0.0383 0.0505 0.0685 0.0828 0.1010	325. .3 *atância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** ******	*****	******	* * * * * * * *	3 3 ***** ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******** Re ****************************	325. .3 *atância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *****	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * *	3 3 ***** ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re 0.0104 0.0226 0.0383 0.0505 0.0685 0.0828 0.1010 0.1119 0.1205</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *****	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * *	3 3 ***** ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re 0.0104 0.0226 0.0383 0.0505 0.0685 0.0828 0.1010 0.1119 0.1205 0.1385	325. .3 eatância ****** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *****	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re 0.0104 0.0226 0.0383 0.0505 0.0685 0.0828 0.1010 0.1119 0.1205 0.1385 0.1589	325. .3 eatância	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 *******	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 *******	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 *******	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 *******	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 *******	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******* ****	* * * * * * * * *	* * * * * * * * *	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *****	* * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *****	* * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******* ***	* * * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******* Re ************************************	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******* ******	* * * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******** Re ************************************	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** ******	* * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	******** Re ************************************	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** ******	* * * * * * * * *	******	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** ******	****	******	* * * * * * *	3 3 ****** 3 *****3 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** ******	****	*****	* * * * * * *	3 3 ***** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ***** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ******** *******	* * * * * * * * *	*****	* * * * * * *	3 3 ****** 3 ***** 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Re ******** Re *****************</pre>	325. .3 eatância ****** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ********	* * * * * * * * *	*****	* * * * * * *	3 3 ****** 3 *****3 3
CAP REA IND_R IND CAP CARG C ************************************	<pre>******* Ref ******** Ref ************************************</pre>	325. .3 eatância ****** J 0.0	2.22 do Jugo 2.4 UGO 2 ** 0.0	E5 ********	* * * * * * * * *	*****	* * * * * * *	3 3 ****** 3 ****** 3

2.3652	0.3272				
0 0100	0 2200				
2.8190	0.3306				
3.2571	0.3337				
2 (020	0 0050				
3.6932	0.3359				
4 3101	0 3379				
1.0101					
9999)				
CARG		72		3	
CANG		/ 2 •		5	
DEF		25.25		3	
		001		2	
KS K4		.001		5	
C CAP CARG		325.		0	
		205			
C CAP CARG		325.		U	
C ************	* * * * * * * * * * * *	** RE1	rorno *	* * * * * * * * * * * * * * * * * * * *	
		1.			
98IND R CARG		0.0	0.0	3	
	0 0104				
0.0009	0.0104				
0.0152	0.0226				
0 0222	0 0303				
0.0222	0.0303				
0.0272	0.0505				
0 0046	0 0 0 0 5				
0.0346	0.0685				
0.0412	0.0828				
0 0505	0 1010				
0.0505	0.1010				
0 0575	0 1119				
0.03/5	0.1115				
0.0641	0.1205				
0 0202	0 1385				
0.0000	0.1000				
0.1077	0.1589				
0 1200	0 1720				
0.1399	0.1/30				
0.2375	0.1904				
0 25.05	0 0000				
0.3595	0.2036				
0.5481	0.2188				
0.0101	0.2200				
0.7968	0.2348				
0 9989	0 2467				
0.5505	0.2407				
1.1661	0.2539				
1 4576	0 2648				
1.15/0	0.2010				
1.7180	0.2754				
1 8541	0 2801				
1.0041	0.2001				
2.1806	0.2890				
2 1051	0 2071				
2.4934	0.29/1				
2.7597	0.3036				
2 20 67	0 2122				
3.2067	0.3123				
3,6343	0.3189				
4 01 04	0 2020				
4.2134	0.3232				
4 6799	0 3272				
1.0755	0.0272				
5.5///	0.3306				
6 4445	0 3337				
0.1110	0.0000				
7.3074	0.3359				
8 5279	0 3379				
0.5215	0.5579				
9999)				
C ************	******	* * * * *	TUCO 1	* * * * * * * * * * * * * * * * * * * *	
C			0000 1		
98IND R CARG		0.0	0.0	3	
	0 0104				
0.0020	0.0104				
0.0048	0.0226				
0 0069	0 0383				
0.0009	0.0003				
0.0085	0.0505				
0 0109	0 0695				
0.0108	0.0005				
0.0129	0.0828				
0 0159	0 1010				
0.0138	0.1010				
0.0180	0.1119				
0 0001	0 1205				
11 11 2 11 1					
0.0201	0.1205				
0.0201	0.1385				
0.0201 0.0253	0.1385				
0.0201 0.0253 0.0338	0.1385 0.1589				
0.0201 0.0253 0.0338 0.0439	0.1203 0.1385 0.1589 0.1738				
0.0201 0.0253 0.0338 0.0439	0.1203 0.1385 0.1589 0.1738				
0.0201 0.0253 0.0338 0.0439 0.0745	0.1203 0.1385 0.1589 0.1738 0.1904				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127	0.1203 0.1385 0.1589 0.1738 0.1904 0.2036				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127	0.1205 0.1385 0.1589 0.1738 0.1904 0.2036				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718	0.1385 0.1589 0.1738 0.1904 0.2036 0.2188				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718 0.2498	0.1203 0.1385 0.1589 0.1738 0.1904 0.2036 0.2188 0.2348				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718 0.2498	0.1385 0.1589 0.1738 0.1904 0.2036 0.2188 0.2348				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718 0.2498 0.3132	0.1385 0.1589 0.1738 0.1904 0.2036 0.2188 0.2348 0.2348				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718 0.2498 0.3132 0.3656	0.1203 0.1385 0.1589 0.1738 0.2036 0.2036 0.2188 0.2348 0.2467 0.2539				
0.0201 0.0253 0.0338 0.0439 0.0745 0.1127 0.1718 0.2498 0.3132 0.3656	0.1203 0.1385 0.1589 0.1738 0.1904 0.2036 0.2188 0.2348 0.2348 0.2467 0.2539				

0 5386	0 2754			
0.5500	0.2701			
0.5813	0.2801			
0.6836	0.2890			
0 7022	0 2071			
0.7823	0.29/1			
0.8652	0.3036			
1.0053	0.3123			
1 1 2 0 4	0.0100			
1.1394	0.3189			
1.3210	0.3232			
1 1672	0 2272			
1.4072	0.5272			
1.7487	0.3306			
2.0204	0.3337			
0.0010	0.0000			
2.2910	0.3359			
2.6736	0.3379			
0000				
~				
C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	^ JUGO I	· · · · · · · · · · · · · · · · · · ·	
98IND R CARG	0.	0 0.0	0	
0	0 0104			
0.0020	0.0104			
0.0048	0.0226			
0 0069	0 0383			
0.0005	0.0505			
0.0085	0.0505			
0.0108	0.0685			
0 0120	0 0828			
0.0129	0.0020			
0.0158	0.1010			
0 0180	0 1119			
0.0100	0 1005			
0.0201	0.1205			
0.0253	0.1385			
0 0330	0 1590			
0.0338	0.1389			
0.0439	0.1738			
0 0745	0 1904			
0.0713	0.1901			
0.112/	0.2036			
0.1718	0.2188			
0 2409	0 2240			
0.2490	0.2340			
0.3132	0.2467			
0 3656	0 2539			
0.3030	0.2000			
0.4570	0.2648			
0.5386	0.2754			
0 5010	0 2001			
0.3013	0.2001			
0.6836	0.2890			
0 7823	0 2971			
0.7025	0.2971			
0.8652	0.3036			
1.0053	0.3123			
1 1204	0.2100			
1.1394	0.3189			
1.3210	0.3232			
1 1670	0 3272			
1.40/2	0.5212			
1.7487	0.3306			
2.0204	0.3337			
2 2010	0 3350			
2.2910	0.3339			
2.6736	0.3379			
9999				
C CARC THE R	ЭОЕ		\land	
C CARG IND K	323	•	U	
C ***********	* * * * * * * * * * * * * * *	* JUGO 2	**********	
98CAP CARG	\cap	0 0 0	3	
0.0045	0.0104	- 0.0	5	
0.0045	0.0104			
0.0077	0.0226			
0 0112	0 0383			
0.0112	0.0000			
0.0138	0.0505			
0.0175	0.0685			
0 0200	0 0020			
0.0208	0.0020			
0.0255	0.1010			
0 0291	0 1119			
0.0291	0.1005			
0.0324	0.1205			
0.0409	0.1385			
0 0544	0 1590			
0.0344	0.1002			
0.0707	0.1738			
0 1200	0.1904			
0.1200	0.0000			
0.1817	0.2036			
0.2770	0.2188			
0.1200 0.1817 0.2770	0.1904 0.2036 0.2188			

0.4027	0.2348						
0.5049	0.2467						
0.5893	0.2539						
0.7367	0.2648						
0.8683	0.2754						
0 9371	0 2801						
1 1021	0.2890						
1 2612	0.2000						
1 2040	0.2971						
1.3948	0.3036						
1.6207	0.3123						
1.8368	0.3189						
2.1295	0.3232						
2.3652	0.3272						
2.8190	0.3306						
3.2571	0.3337						
3.6932	0.3359						
4.3101	0.3379						
9999							
C ********	* * * * * * * * * * *	* * * *	RNS -	Curva	Experimental	* * * * * * * * * * * * * * * * * * * *	* * *
98CAP REA		0.0	0.0				3
0.0325	0.0087						
0.0551	0.0188						
0.0806	0.0319						
0.0990	0.0421						
0.1258	0.0571						
0 1499	0 0690						
0 1838	0 0841						
0 2093	0.0011						
0.2000	0.0000						
0.2001	0.1154						
0.2941	0.1224						
0.3917	0.1324						
0.3090	0.1449						
0.8640	0.1586						
1.3080	0.1697						
1.9937	0.1823						
2.8987	0.1957						
3.6340	0.2056						
4.2420	0.2116						
5.3025	0.2207						
6.2499	0.2295						
6.7448	0.2334						
7.9325	0.2408						
9.0779	0.2476						
10.0394	0.2530						
11.6655	0.2603						
13.2209	0.2657						
15.3278	0.2693						
17.0246	0.2727						
20.2909	0.2755						
23 4441	0 2781						
26 5832	0 2799						
31 0232	0.2816						
91.0252	0.2010						
		2					0
C IND D CADC		- J 2 J E					0
C IND_R CARG		323.					0
C CARG IND_R		323.					0
IND_I		1.56					2
IND_RI		1.56					2
IND_R2		1.E6					2
REA_1		1.E6					2
IND_3		⊥.E6	_				2
C ***********	* * * * * * * * * * *	****	Ferro	- Gap	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *
98IND_R CAP		0.0	0.0				3
0.0089	0.0087						
0.0152	0.0188						
0.0222	0.0319						
0.0272	0.0421						

```
0.0571
     0.0346
               0.0690
0.0841
     0.0412
     0.0505
                0.0933
     0.0575
     0.0641
                0.1004
     0.0808
                0.1154
                0.1324
     0.1077
     0.1399
                0.1449
                0.1586
     0.2375
               0.1697
     0.3595
     0.5481
               0.1823
               0.1957
     0.7968
     0.9989
                0.2056
     1.1661
                0.2116
                0.2207
     1.4576
     1.7180
               0.2295
     1.8541
                0.2334
               0.2408
     2.1806
     2.4954
                0.2476
               0.2530
     2.7597
     3.2067
               0.2603
     3.6343
               0.2657
     4.2134
                0.2693
     4.6799
                0.2727
                0.2755
     5.5777
     6.4445
                0.2781
     7.3074
               0.2799
     8.5279
                0.2816
          9999
 IND R CAP
                          325.
                                                                           0
/SWITCH
C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
 CARG R3
               .0321 1.E3
                                                                           0
       DEF
                   -1.
 R4
                            .25
                                                                           0
/SOURCE
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14FONT 0 311.7 60.
                                                                    1.E3
                                                               -1.
60IND 1 0
                                                                        1.E3
60IND R1 0
                                                                        1.E3
60IND R2 0
                                                                        1.E3
60REA_1 0
60IND 3 0
                                                                        1.E3
                                                                        1.E3
/OUTPUT
 CARG IND R CAP CAP CARG REA
BLANK TACS
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
```

6.15 – Roteiro em ATP da Estrutura Simétrica com elemento 98 e com dual eletromagnético

500	1	1	1	1	0	0	1	0	
/TACS									
TACS HYBRID									
/TACS									
90IND									1.E3
1RET +IND)					1.			
1.									
	1.								
90CARG									1.E3
1JUG_2 +CAR	G					1.			
1.									
	1.								
90CAP									1.E3
1JUG +CAP)					1.			
1.									
000000	⊥.								1 = 0
90REA						1			1.63
IREA_I +REA	L					1.			
1.	1								
OOTND D	1.								1 10 2
1 TND R +TND	D					1			1.60
	<u></u>					1.			
1.	1								
C 1	2		З	4	5	5	6	7	8
C 345678901234	56789012	2345678	90123456	- 5789012	234567890	12345678	901234567	890123456	7890
/BRANCH									
C < n1 >< n2 >	<ref1><i< td=""><td>ref2><</td><td>R >< L</td><td>>< C</td><td>></td><td></td><td></td><td></td><td></td></i<></ref1>	ref2><	R >< L	>< C	>				
C < n1 >< n2 >	<ref1><r< td=""><td>ref2>< 1</td><td>r >< A</td><td>>< B</td><td>><leng></leng></td><td>><><>0</td><td></td><td></td><td></td></r<></ref1>	ref2>< 1	r >< A	>< B	> <leng></leng>	><><>0			
FONT FONT R	l		.06		5				0
FONT RIND			5	5.5					3
CARG REA			325.						3
IND_R CAP			.07						3
CAP CARG				2.22	2E5				3
C *********	******	**** R	eatância	a do Ga	ap *****	*******	* * * * * * * * *	******	****
IND_R IND			3	3.1					3
C *********	******	******	*** Jugo	> 1 **;	* * * * * * * * *	******	*******	*******	* * * *
98CAP CARG			0.0 0	0.0					3
0.0030	0.02	226							
0.0055	0.00	640							
0.006/	0.09	930							
0.0085	0.12	279							
0.0102	0.10	010 041							
0.0120	0.13	941 202							
0.0133	0.22	186							
0.0207	0.2	400 845							
0.1385	0.30	061							
0.2462	0.3	327							
0.3732	0.35	569							
0.5135	0.38	337							
0.7555	0.42	226							
0.9975	0.45	556							
1.3910	0.49	997							
1.6736	0.51	185							
2.6601	0.54	438							
3.5283	0.55	568							
4.4113	0.50	639							
99	99								
CARG			72.						3
DEF		2	5.25						3
R3 R4			.001						3
C CARG CAP			325.						3
C CARG CAP		te de de de la Color	325.	o · ·		a da da da da da da da da da			3
	*****	*****	^ * * Jugo) Z ***	* * * * * * * * *	******	^ ~ ~ * * * * * * * *	^ ~ ~ * * * * * * * *	~ * * *
JOCAP IND	0 01	226	0.0 (.0					3
	0.0/	44.0							

0.0044	0.0640		
0 0053	0 0930		
0.0055	0.0950		
0.0067	0.12/9		
0.0080	0.1618		
0.0099	0.1941		
0 0121	0 2203		
0.0121	0.2205		
0.0164	0.2486		
0.0409	0.2845		
0.1095	0.3061		
0 1947	0 3327		
0.1947	0.3527		
0.2950	0.3569		
0.4060	0.3837		
0.5973	0.4226		
0 7886	0 4556		
0.7000	0.4007		
1.0997	0.4997		
1.3231	0.5185		
2.1030	0.5438		
2 7894	0 5568		
2.7034	0.5500		
3.48/5	0.5639		
9	999		
C *********	* * * * * * * * * * * * * *	**** Retorno	* * * * * * * * * * * * * * * * * * * *
98IND CARG		0.0 0.0	3
0 0004	0 0 0 0 1	0.0	5
0.0084	0.0301		
0.0157	0.0853		
0.0188	0.1241		
0 0240	0.1705		
0.0210	0.2150		
0.0287	0.2158		
0.0355	0.2588		
0.0433	0.2938		
0 0585	0 3315		
0.0505	0.0010		
0.1462	0.3793		
0.3917	0.4081		
0.6962	0.4436		
1 0550	0 1759		
1.0550	0.4759		
1.4519	0.5116		
2.1361	0.5634		
2.8203	0.6075		
3 9327	0 6663		
5.9527	0.0005		
4./318	0.6913		
7.5207	0.7250		
9,9754	0.7424		
12 /718	0 7519		
12.4/10	0.7519		
9	999		
C ********	*****	**** Jugo 2 *	***************************************
98CAP IND		0.0 0.0	3
0 0023	0 0226		
0.0023	0.0220		
0.0044	0.0640		
0.0053	0.0930		
0.0067	0.1279		
0.0080	0.1618		
0.0000	0 10/1		
0.0099	0.1941		
0.0121	0.2203		
0.0164	0.2486		
0.0409	0.2845		
0 1005	0 2010		
0.1095	0.3001		
0.1947	0.3327		
0.2950	0.3569		
0.4060	0.3837		
0 5070	0.40007		
0.59/3	0.4220		
0.7886	0.4556		
1.0997	0.4997		
1 3231	0.5185		
2 1020	0 5100		
2.1030	0.3438		
2.7894	0.5568		
3.4875	0.5639		
9	999		
		325	2
C IND CAP		J_J.	3

C ********	* * * * * * * * * * *	**** J	uqo 1	******	* *
98CAP CARG		0.0	0.0		3
0.0030	0.0226				
0.0055	0.0640				
0.0067	0.0930				
0.0085	0.1279				
0.0102	0.1618				
0.0126	0.1941				
0.0153	0.2203				
0.0207	0.2486				
0.0517	0.2845				
0.1385	0.3061				
0.2462	0.3327				
0.3732	0.3569				
0.5135	0.3837				
0.7555	0.4226				
0.9975	0.4556				
1.3910	0.4997				
1.6736	0.5185				
2.6601	0.5438				
3.5283	0.5568				
4.4113	0.5639				
9999					
C *********	* * * * * * * * * * *	*****	cami	nho médio ************************************	* *
C *********	* * * * * * * * * * *	*****	RNS	* * * * * * * * * * * * * * * * * * * *	* *
98REA CARG		0.0	0.0		3
0.0226	0.0117				
0.0424	0.0330				
0.0509	0.0481				
0.0650	0.0661				
0.0778	0.0836				
0.0962	0.1003				
0.1174	0.1138				
0.1584	0.1285				
0.3959	0.1470				
1.0605	0.1581				
1.8849	0.1719				
2.8563	0.1844				
3.9309	0.1982				
5.7833	0.2183				
7.6356	0.2354				
10.6474	0.2582				
12.8108	0.2679				
20.3616	0.2809				
27.0074	0.2877				
33.7663	0.2914				
9999					
REA CAP		.07			3
C IND CAP		325.			3
C CARG IND		325.			3
RET		1.E6			2
JUG 2		1.E6			2
JUG		1.E6			2
REA 1		1.E6			2
IND R1		1.E6			2
C ************	* * * * * * * * * * *	****	Ferro	- Gap ***********************************	* *
98CAP IND		0.0	0.0		3
0.0084	0.0117				
0.0157	0.0330				
0.0188	0.0481				
0.0240	0.0661				
0.0287	0.0836				
0.0355	0.1003				
0.0433	0.1138				
0.0585	0.1285				
0.1462	0.1470				
0.3917	0.1581				

0.1719 0.1844 0.1982 0.6962 1.0550 1.4519 0.2183 2.1361 2.8203 0.2354 3.9327 0.2582 0.2679 4.7318 7.5207 0.2809 9.9754 0.2877 12.4718 0.2914 9999 CAP 325. IND 3 /SWITCH C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type > CARG R3 .0441 1.E3 0 R4 DEF -1. .25 0 /SOURCE C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP > 14FONT 0 311.7 60. 60RET 0 -1. 1.E3 60RET 1.E3 60JUG_2 0 1.E3 60JUG 0 1.E3 60REA_1 0 1.E3 60IND_R1 0 1.E3 /OUTPUT CAP CARG IND REA BLANK TACS BLANK BRANCH BLANK SWITCH BLANK SOURCE BLANK OUTPUT BLANK PLOT BEGIN NEW DATA CASE BLANK

6.16 – Roteiro em ATP da Estrutura Assimétrica com elemento 96 e com dual eletromagnético

BEGIN NEW DATA CA	ASE							
C Generated by AT C A Bonneville Pc C by H. K. Høidal	PDRAW ma: ower Admin: .en at SEf <i>l</i>	lo, quinta Istration AS/NTNU -	a-feira 1 program NORWAY 1	.9, 2011 .994-2006	6 6			
C dT >< Tmax >< 1.E-6 .5 500 1	< Xopt >< 0 60. 1	Copt > 60. 1	1	0	0	1	0	
/TACS								
TACS HYBRID								
90CAP								1.E3
90CARG								1.E3
1IND_1 +CAP					1.			
1.	1							
1IND_2 +CARG	±•				1.			
	1.							
90IND_R								1.E3
1IND_R1 +IND_R 1.					1.			
	1.							
1 IND_R2 +CARG					1.			
1.	1.							
90rea								1.E3

1REA_1 +REA 1. 1. 1. 90IND 1.E3 1IND_3 +IND 1. 1. 1. 1 2 3 4 5 6 7 С 8 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0 FONT FONT R .06 0 FONT RIND R 5.5 3 IND_R IND .3 3 CAP CARG 2.22E5 3 IND CAP 3 2.4 96CAP CARG 0.0 0.0 3 -0.3754 -0.3733 -4.2773 -3.6605 -0.3708 -3.2244 -2.7863 -0.3673 -0.3636 -2.3325 -0.3591 -2.0968 -1.8041 -0.3543 -1.5880 -0.3470 -0.3374 -1.3621 -1.2285 -0.3301 -0.3211 -1.0693 -0.9043 -0.3112 -0.8356 -0.3060 -0.7040 -0.2942 -0.5566 -0.2821 -0.4721 -0.2741 -0.3700 -0.2609 -0.2443 -0.2431 -0.1490 -0.2262 -0.2115 -0.0873 -0.0380 -0.1931 -0.1765 -0.0217 -0.1539 -0.0081 0.0003 -0.1339 0.0037 -0.1244 0.0072 -0.1122 -0.0920 0.0119 0.0152 -0.0761 0.0190 -0.0561 0.0215 -0.0426 -0.0251 0.0251 -0.0116 0.0282 0.0116 0.0372 0.0404 0.0251 0.0439 0.0426 0.0561 0.0465 0.0502 0.0761 0.0920 0.0535 0.1122 0.0583 0.0618 0.1244 0.1339 0.0651 0.1539 0.1765 0.0736 0.0871 0.1931 0.1034 0.2115 0.1528 0.2144 0.2262 0.3097 0.2431

0.4354	0.2609		
0 5376	0 2741		
0 6221	0 2021		
0.0221	0.2021		
0.7694	0.2942		
0.9010	0.3060		
0.9698	0.3112		
1.1348	0.3211		
1 2939	0 3301		
1 4075	0 2274		
1.4275	0.3374		
1.6534	0.34/0		
1.8695	0.3543		
2.1622	0.3591		
2.3979	0.3636		
2.8517	0.3673		
3 2898	0 3708		
3 7250	0 2722		
1 2429	0.3755		
4.3428	0.3/54		
9999			
CARG		72.	3
DEF		25.25	3
R3 R4		.001	3
C ***********	*******	* Retorno ***********************************	*
96IND R CARC		0.0 0.0	3
	0 2754	0.0 0.0	5
-0.4032	-0.3734		
-/.242/	-0.3/33		
-6.3798	-0.3708		
-5.5130	-0.3673		
-4.6151	-0.3636		
-4.1487	-0.3591		
-3 5695	-0 3543		
-3 1420	-0 3470		
-3.1420	-0.3470		
-2.6950	-0.33/4		
-2.4307	-0.3301		
-2.1158	-0.3211		
-1.7893	-0.3112		
-1.6533	-0.3060		
-1 3928	-0 2942		
_1 1013	_0 2021		
-1.1013	-0.2021		
-0.9342	-0.2/41		
-0.7321	-0.2609		
-0.4833	-0.2431		
-0.2948	-0.2262		
-0.1727	-0.2115		
-0 0752	-0 1931		
-0 0429	-0 1765		
-0 0161	_0 1520		
-0.0161	-0.1339		
0.0006	-0.1339		
0.0072	-0.1244		
0.0142	-0.1122		
0.0235	-0.0920		
0.0302	-0.0761		
0.0375	-0.0561		
0.0426	-0.0426		
0 0496	-0 0251		
0.0490	-0 0116		
0.0338	-U.UII0		
0.0/3/	0.0110		
0.0799	0.0251		
0.0869	0.0426		
0.0920	0.0561		
0.0993	0.0761		
0.1060	0.0920		
0 1153	0.1122		
0 1222	0 12//		
0.1223	0.1220		
0.1289	0.1339		
0.1456	0.1539		
0.1724	0.1765		
0.2047	0.1931		

	0.3022	0.2115	
	0 4243	0 2262	
	0.1213	0.2202	
	0.6128	0.2431	
	0.8616	0.2609	
	1.0637	0.2741	
	1 2200	0.0001	
	1.2300	0.2021	
	1.5223	0.2942	
	1.7828	0.3060	
	1 0100	0 2112	
	1.9100	0.3112	
	2.2453	0.3211	
	2.5602	0.3301	
	2 8245	0 3374	
	2.0245	0.3374	
	3.2/15	0.34/0	
	3.6990	0.3543	
	4 2782	0 3591	
	1.2702	0.0001	
	4./446	0.3636	
	5.6425	0.3673	
	6.5093	0.3708	
	7 2722	0 2722	
	1.3122	0.3733	
	8.5927	0.3754	
	9999		
	C *************	**********	*** Turo 9 ***********************************
ļ			
	96CAP CARG		0.0 0.0 3
ļ	-4.2773	-0.3754	
	-3.6605	-0.3733	
ļ	_2 2244	_0 2700	
	-3.2244	-0.3708	
	-2.7863	-0.3673	
	-2.3325	-0.3636	
	-2 0969	_0 3501	
	-2.0908	-0.3391	
	-1.8041	-0.3543	
	-1.5880	-0.3470	
	-1 3621	-0 3374	
	1 0005	0.2201	
	-1.2285	-0.3301	
	-1.0693	-0.3211	
	-0.9043	-0.3112	
	-0 9356	-0 3060	
	-0.8550	-0.3000	
	-0.7040	-0.2942	
	-0.5566	-0.2821	
	-0 4721	-0 2741	
	0.1721	0.2711	
	-0.3/00	-0.2609	
	-0.2443	-0.2431	
	-0.1490	-0.2262	
	_0 0973	_0 2115	
	-0.0873	-0.2113	
ļ	-0.0380	-0.1931	
	-0.0217	-0.1765	
ļ	-0 0081	-0.1539	
	0 0002	_0 1220	
ļ	0.0003	-0.1339	
	0.0037	-0.1244	
ļ	0.0072	-0.1122	
	0 0119	-0.0920	
ļ	0 0150	0.07/1	
	0.0152	-0.0/61	
	0.0190	-0.0561	
	0.0215	-0.0426	
ļ	0 0251	-0.0251	
	0.0251	-0.0251	
ļ	0.0282	-0.0116	
	0.0372	0.0116	
ļ	0.0404	0.0251	
	0.0420	0 0400	
ļ	0.0439	0.0420	
	0.0465	0.0561	
ļ	0.0502	0.0761	
	0 0535	0 0020	
ļ	0.0555	0.0920	
	0.0583	0.1122	
ļ	0.0618	0.1244	
	0 0651	0 1339	
ļ	0.0001	0 1 5 2 0	
	0.0736	0.1039	
ļ	0.0871	0.1765	
ļ	0.1034	0.1931	
1			

0.1528	0.2115							
0 2144	0 2262							
0.2144	0.2202							
0.3097	0.2431							
0.4354	0.2609							
0 5376	0 2741							
0.5570	0.2/41							
0.6221	0.2821							
0.7694	0.2942							
0 9010	0 3060							
0.9010	0.3000							
0.9698	0.3112							
1.1348	0.3211							
1 2939	0 3301							
1.2959	0.3301							
1.42/5	0.33/4							
1.6534	0.3470							
1 8695	0 35/3							
1.0000	0.0040							
2.1622	0.3591							
2.3979	0.3636							
2 8517	0 3673							
2.001/	0.0700							
3.2898	0.3708							
3.7259	0.3733							
4 3428	0 3754							
1.0120	0.0/01							
9999								
REA CARG		.3						0
IND 1		1.E6						2
		1 50						-
IND_2		т.ЕО						2
IND R1		1.E6						2
IND R2		1 E6						2
		1 50						2
REA_1		1.50						2
IND 3		1.E6						2
 	*********	* * * * *	RNS ****	******	******	********	********	* * * * *
~ ~ +++++++++++++++++++++++++++++++++++	· + + + + + + +				L_ +++++	++++++++++	+++++++++++++++++++++++++++++++++++++++	++++
		urva B	хн-ь	xperimen		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~ ~ ^ ^ ^
96CAP REA		0.0	0.0					3
-30 7876	-0 2816							
50.1010	0.2010							
26 2477	0 0700							
-26.3477	-0.2799							
-26.3477 -23.2086	-0.2799 -0.2781							
-26.3477 -23.2086 -20.0554	-0.2799 -0.2781 -0.2755							
-26.3477 -23.2086 -20.0554	-0.2799 -0.2781 -0.2755							
-26.3477 -23.2086 -20.0554 -16.7890	-0.2799 -0.2781 -0.2755 -0.2727							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.25476							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423 -7.6970	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423 -7.6970	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423 -7.6970 -6.5092	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \end{array}$	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \end{array}$							
$\begin{array}{r} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0265 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423 -7.6970 -6.5092 -6.0143 -5.0670 -4.0065	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\end{array}$							
-26.3477 -23.2086 -20.0554 -16.7890 -15.0922 -12.9854 -11.4300 -9.8039 -8.8423 -7.6970 -6.5092 -6.0143 -5.0670 -4.0065 -3.3984 -2.6632 -1.7582	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.267							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1697 -0.1586 -0.1449 -0.1324							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\end{array}$							
$\begin{array}{c} -26.3477\\ -23.2086\\ -20.0554\\ -16.7890\\ -15.0922\\ -12.9854\\ -11.4300\\ -9.8039\\ -8.8423\\ -7.6970\\ -6.5092\\ -6.0143\\ -5.0670\\ -4.0065\\ -3.3984\\ -2.6632\\ -1.7582\\ -1.0724\\ -0.6284\\ -0.2735\\ -0.1561\\ -0.0586\end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0217 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0931\\ -0.091\\ -0.091\\ -0.091\\$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ \end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2234 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1004 -0.0933 -0.0841 -0.0690 -0.0571							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1266 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0571\\ -0.0421\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\end{array}$							
$\begin{array}{c} -26.3477\\ -23.2086\\ -20.0554\\ -16.7890\\ -15.0922\\ -12.9854\\ -11.4300\\ -9.8039\\ -8.8423\\ -7.6970\\ -6.5092\\ -6.0143\\ -5.0670\\ -4.0065\\ -3.3984\\ -2.6632\\ -1.7582\\ -1.0724\\ -0.6284\\ -0.2735\\ -0.1561\\ -0.0586\\ 0.0022\\ 0.0263\\ 0.0517\\ 0.0857\\ 0.1097\\ 0.1366\\ 0.1550\end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\end{array}$							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ 0.1550 \\ 0.1804 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2234 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1586 -0.1449 -0.1004 -0.0933 -0.0841 -0.0690 -0.0571 -0.0421 -0.0319 -0.0188							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ 0.1550 \\ 0.1804 \\ 0.2030 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1697 -0.1586 -0.1449 -0.1324 -0.1004 -0.0933 -0.0841 -0.0931 -0.0841 -0.0690 -0.0571 -0.0421 -0.0319 -0.0188 -0.087							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ 0.1550 \\ 0.1804 \\ 0.2030 \\ 0.2010 \\ \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ \end{array}$							
$\begin{array}{c} -26.3477\\ -23.2086\\ -20.0554\\ -16.7890\\ -15.0922\\ -12.9854\\ -11.4300\\ -9.8039\\ -8.8423\\ -7.6970\\ -6.5092\\ -6.0143\\ -5.0670\\ -4.0065\\ -3.3984\\ -2.6632\\ -1.7582\\ -1.0724\\ -0.6284\\ -0.2735\\ -0.1561\\ -0.0586\\ 0.0022\\ 0.0263\\ 0.0517\\ 0.0857\\ 0.1097\\ 0.1366\\ 0.1550\\ 0.1804\\ 0.2030\\ 0.2681\end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ 0.0087\\ \end{array}$							
$\begin{array}{c} -26.3477\\ -23.2086\\ -20.0554\\ -16.7890\\ -15.0922\\ -12.9854\\ -11.4300\\ -9.8039\\ -8.8423\\ -7.6970\\ -6.5092\\ -6.0143\\ -5.0670\\ -4.0065\\ -3.3984\\ -2.6632\\ -1.7582\\ -1.0724\\ -0.6284\\ -0.2735\\ -0.1561\\ -0.0586\\ 0.0022\\ 0.0263\\ 0.0517\\ 0.0857\\ 0.197\\ 0.1366\\ 0.1550\\ 0.1804\\ 0.2030\\ 0.2681\\ 0.2907\end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1697 -0.1586 -0.1449 -0.1324 -0.1154 -0.1004 -0.0933 -0.0841 -0.0690 -0.0571 -0.0841 -0.0087 -0.0188 -0.0087 -0.0087 -0.0087							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ 0.1550 \\ 0.1804 \\ 0.2030 \\ 0.2681 \\ 0.2907 \\ 0.3161 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1697 -0.1586 -0.1449 -0.1324 -0.1154 -0.1004 -0.0933 -0.0841 -0.0933 -0.0841 -0.0690 -0.0571 -0.0421 -0.0319 -0.0188 -0.0087 -0.0188							
$\begin{array}{c} -26.3477 \\ -23.2086 \\ -20.0554 \\ -16.7890 \\ -15.0922 \\ -12.9854 \\ -11.4300 \\ -9.8039 \\ -8.8423 \\ -7.6970 \\ -6.5092 \\ -6.0143 \\ -5.0670 \\ -4.0065 \\ -3.3984 \\ -2.6632 \\ -1.7582 \\ -1.0724 \\ -0.6284 \\ -0.2735 \\ -0.1561 \\ -0.0586 \\ 0.0022 \\ 0.0263 \\ 0.0517 \\ 0.0857 \\ 0.1097 \\ 0.1366 \\ 0.1550 \\ 0.1804 \\ 0.2030 \\ 0.2681 \\ 0.2907 \\ 0.3161 \\ \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823 -0.1697 -0.1586 -0.1449 -0.1324 -0.1154 -0.1004 -0.0933 -0.0841 -0.0690 -0.0571 -0.0841 -0.0690 -0.0571 -0.0421 -0.0421 -0.0319 -0.0188 -0.0087 -0.0188 -0.0087 -0.0188 -0.0319 -0.0188 -0.0319 -0.0188 -0.0319 -0.0188 -0.0319 -0.0197							

0 3614	0 0571			
0 2054	0.0000			
0.3834	0.0690			
0.4194	0.0841			
0.4448	0.0933			
0 1699	0 1004			
0.4009	0.1004			
0.5297	0.1154			
0.6272	0.1324			
0 7446	0 1440			
0.7440	0.1449			
1.0995	0.1586			
1 5435	0 1697			
1.0100	0.1000			
2.2293	0.1823			
3.1343	0.1957			
3 8695	0 2056			
	0.2000			
4.4//6	0.2116			
5.5381	0.2207			
6.4854	0.2295			
6 0002	0 2224			
0.9003	0.2334			
8.1681	0.2408			
9.3134	0.2476			
10 2750	0 2520			
10.2/00	0.2000			
11.9011	0.2603			
13.4565	0.2657			
15 5633	0 2693			
17 0 001	0.2095			
1/.2601	0.2/27			
20.5265	0.2755			
23 6797	0 2781			
25.0757	0.2701			
26.8188	0.2/99			
31.2587	0.2816			
9999				
0 +++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++ 1	****	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	nnn Jugo I		
96IND R CARG		0.0 0.0	3	
-2.6533	-0.3754			
2.0000	0.0700			
	11 2/22			
-2.2707	-0.3/33			
-2.2707	-0.3733 -0.3708			
-2.2707 -2.0001 -1.7284	-0.3733 -0.3708 -0.3673			
-2.2707 -2.0001 -1.7284	-0.3733 -0.3708 -0.3673 -0.3636			
-2.2707 -2.0001 -1.7284 -1.4469	-0.3733 -0.3708 -0.3673 -0.3636			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.3453 \\ -0.2020 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609			
-2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3374 -0.3211 -0.3112 -0.3010 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.024 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2215 -0.1931 -0.1765			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0135 \\ -0.0135 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765 -0.1539 -0.1339			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2629 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0245 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765 -0.1539 -0.1234 -0.1224			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765 -0.1539 -0.1339 -0.1244 -0.1122			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \end{array}$	$\begin{array}{c} -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3673\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2629 \\ -0.2629 \\ -0.2629 \\ -0.26431 \\ -0.2609 \\ -0.26431 \\ -0.2629 \\ -0.2615 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1224 \\ -0.1122 \\ -0.0920 \\ -0.0761 \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0116 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765 -0.1539 -0.1339 -0.1244 -0.1122 -0.0920 -0.0761 -0.0561			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0561 \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \end{array}$	$\begin{array}{c} -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3591\\ -0.3543\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\\ -0.0761\\ -0.0561\\ -0.0426\end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2629 \\ -0.2821 \\ -0.2629 \\ -0.2629 \\ -0.2629 \\ -0.2629 \\ -0.2619 \\ -0.1339 \\ -0.1539 \\$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \end{array}$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1224 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \\ -0.0116 \\ \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\$	$\begin{array}{c} -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0561 \\ -0.0251 \\ -0.0116 \\ -0.0251 \\ -0.0116 \\ $			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \end{array}$	$\begin{array}{c} -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3673\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3010\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\\ -0.0761\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0251\\ -0.0116\\ 0.0116\end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \\ 0.0251 \end{array}$	$\begin{array}{c} -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3673\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2620\\ -0.2431\\ -0.2620\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\\ -0.0761\\ -0.0561\\ -0.0426\\ -0.0251\\ -0.0116\\ 0.0116\\ 0.0251\\ \end{array}$			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \\ 0.0251 \\ 0.0272 \end{array}$	-0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931 -0.1765 -0.1539 -0.1339 -0.1224 -0.1339 -0.1224 -0.1339 -0.1244 -0.122 -0.0920 -0.0761 -0.0561 -0.0426 -0.0251 -0.0116 0.0426			
$\begin{array}{c} -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0023 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \\ 0.0251 \\ 0.0272 \\$	$\begin{array}{c} -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3673\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.2609\\ -0.2431\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\\ -0.0761\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0426\\ -0.0251\\ -0.0116\\ 0.0251\\ -0.0426\\ -0.0251\\ -0.0426\\ -0.0251\\ -0.0426\\ -0.0251\\ -0.0116\\ -0.0426\\ -0.0251\\ -0.0426\\ -0.042$			

0.0311	0.0761				
0 0333	0 0020				
0.0352	0.0920				
0.0361	0.1122				
0.0383	0.1244				
0 0404	0 1339				
0.0404	0.1539				
0.0456	0.1539				
0.0541	0.1765				
0 0642	0 1021				
0.0042	0.1931				
0.0948	0.2115				
0.1330	0.2262				
0.1001	0.2202				
0.1921	0.2431				
0.2701	0.2609				
0 3335	0 2741				
0.3355	0.2711				
0.3859	0.2821				
0.4773	0.2942				
0 5589	0 3060				
0.0000	0.0000				
0.6016	0.3112				
0.7039	0.3211				
0 8026	0 3301				
0.0020	0.0001				
0.8855	0.33/4				
1.0256	0.3470				
1 1597	0 3543				
1 0 4 1 0	0.0040				
1.3413	0.3591				
1,4875	0.3636				
1 7600	0 2672				
1.7690	0.3073				
2.0407	0.3708				
2.3113	0.3733				
2.0220	0.2754				
2.6939	0.3/54				
9999	1				
C **********	*******	**** JII?	ιαο 1	* * * * * * * * * * * * * * * * * * * *	
OCTND D CADC		0 0	0 0	2	
96IND_R CARG		0.0		3	
2 (522			0.0		
-2.0333	-0.3754		0.0		
-2.0333	-0.3754 -0.3733		0.0		
-2.05335	-0.3754		0.0		
-2.0333 -2.2707 -2.0001	-0.3754 -0.3733 -0.3708		0.0		
-2.0333 -2.2707 -2.0001 -1.7284	-0.3754 -0.3733 -0.3708 -0.3673		0.0		
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636		0.0		
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636		0.0		
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.6633	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.2452	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2221				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \end{array}$	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431				
-2.0333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515 -0.0924	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2262 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \end{array}$	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515 -0.0924 -0.0542 -0.0236	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2262 -0.2115 -0.1931				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0236\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \end{array}$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \end{array}$				
-2.6333 -2.2707 -2.0001 -1.7284 -1.4469 -1.3007 -1.1191 -0.9850 -0.8449 -0.7620 -0.6633 -0.5610 -0.5183 -0.4367 -0.3453 -0.2929 -0.2295 -0.1515 -0.0924 -0.0542 -0.0236 -0.0135 -0.0050 0_0002	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2269 -0.2431 -0.2269 -0.2431 -0.2269 -0.2431 -0.2269 -0.2431 -0.2609 -0.2431 -0.2755 -0.2155 -0.1539 -0.1539 -0.1339				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ -0.0050\\ 0.0002\\ -0.0023\end{array}$	-0.3754 -0.3733 -0.3708 -0.3673 -0.3636 -0.3591 -0.3543 -0.3470 -0.3374 -0.3301 -0.3211 -0.3112 -0.3060 -0.2942 -0.2821 -0.2741 -0.2609 -0.2431 -0.2609 -0.2431 -0.2622 -0.2115 -0.1931 -0.1765 -0.1539 -0.1339				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1239 \\ -0.1244 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \end{array}$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\\ 0.0045\\ 0.0074\\ -0.0545\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2622 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.09261 \\ \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.55183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3673 \\ -0.3591 \\ -0.3543 \\ -0.3543 \\ -0.374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2629 \\ -0.2741 \\ -0.2639 \\ -0.2741 \\ -0.2629 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1224 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2622 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1239 \\ -0.1239 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \end{array}$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\\ 0.0045\\ 0.0074\\ 0.0095\\ 0.0118\\ 0.0134\\ 2.55\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.5183 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3543 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0023 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.2115 \\ -0.1231 \\ -0.1765 \\ -0.1539 \\ -0.1539 \\ -0.1539 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \\ -0.0116 \end{array}$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\\ 0.0045\\ 0.0074\\ 0.0095\\ 0.0118\\ 0.0134\\ 0.0155\\ 0.0175\\ 0.0231\\ \end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \\ -0.0116 \\ 0.0116 \\ \end{array}$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \\$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \\ -0.0116 \\ 0.0116 \\ -$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\\ 0.0045\\ 0.0074\\ 0.0095\\ 0.0118\\ 0.0134\\ 0.0155\\ 0.0175\\ 0.0231\\ 0.0251\end{array}$	$\begin{array}{c} -0.3754\\ -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3636\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2629\\ -0.2821\\ -0.2741\\ -0.2629\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.15$				
$\begin{array}{c} -2.6333 \\ -2.2707 \\ -2.0001 \\ -1.7284 \\ -1.4469 \\ -1.3007 \\ -1.1191 \\ -0.9850 \\ -0.8449 \\ -0.7620 \\ -0.6633 \\ -0.5610 \\ -0.5183 \\ -0.4367 \\ -0.3453 \\ -0.2929 \\ -0.2295 \\ -0.1515 \\ -0.0924 \\ -0.0542 \\ -0.0236 \\ -0.0135 \\ -0.0050 \\ 0.0002 \\ 0.0023 \\ 0.0045 \\ 0.0074 \\ 0.0095 \\ 0.0118 \\ 0.0134 \\ 0.0155 \\ 0.0175 \\ 0.0231 \\ 0.0251 \\ 0.0272 \end{array}$	$\begin{array}{c} -0.3754\\ -0.3733\\ -0.3708\\ -0.3673\\ -0.3673\\ -0.3636\\ -0.3591\\ -0.3543\\ -0.3470\\ -0.3374\\ -0.3301\\ -0.3211\\ -0.3112\\ -0.3060\\ -0.2942\\ -0.2821\\ -0.2741\\ -0.2609\\ -0.2431\\ -0.2629\\ -0.2431\\ -0.2262\\ -0.2115\\ -0.1931\\ -0.1765\\ -0.1539\\ -0.1339\\ -0.1244\\ -0.1122\\ -0.0920\\ -0.0761\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0561\\ -0.0251\\ -0.0116\\ 0.0251\\ -0.0426\end{array}$				
$\begin{array}{c} -2.6333\\ -2.2707\\ -2.0001\\ -1.7284\\ -1.4469\\ -1.3007\\ -1.1191\\ -0.9850\\ -0.8449\\ -0.7620\\ -0.6633\\ -0.5610\\ -0.5183\\ -0.4367\\ -0.3453\\ -0.2929\\ -0.2295\\ -0.1515\\ -0.0924\\ -0.0542\\ -0.0236\\ -0.0135\\ -0.0050\\ 0.0002\\ 0.0023\\ 0.0045\\ 0.0074\\ 0.0095\\ 0.0118\\ 0.0134\\ 0.0155\\ 0.0175\\ 0.0231\\ 0.0251\\ 0.0272\\ 0.0232\end{array}$	$\begin{array}{c} -0.3754 \\ -0.3733 \\ -0.3708 \\ -0.3673 \\ -0.3673 \\ -0.3636 \\ -0.3591 \\ -0.3543 \\ -0.3470 \\ -0.3374 \\ -0.3301 \\ -0.3211 \\ -0.3112 \\ -0.3060 \\ -0.2942 \\ -0.2821 \\ -0.2741 \\ -0.2609 \\ -0.2431 \\ -0.2609 \\ -0.2431 \\ -0.262 \\ -0.2115 \\ -0.1931 \\ -0.1765 \\ -0.1539 \\ -0.1339 \\ -0.1244 \\ -0.1122 \\ -0.0920 \\ -0.0761 \\ -0.0561 \\ -0.0426 \\ -0.0251 \\ -0.0116 \\ 0.0116 \\ 0.0251 \\ -0.0426 \\ -0.0251 \\ -0.0426 \\ -0.0251 \\ -0.0426 \\ -0.0251 \\ -0.0426 \\ -0.0251 \\ -0.0426 \\ -0.0251 \\ -0.0426 \\ -0$				

0 0311	0 0761				
0.0011	0.0001				
0.0332	0.0920				
0.0361	0.1122				
0 0 2 0 2	0 1 2 4 4				
0.0303	0.1244				
0.0404	0.1339				
0 0456	0 1539				
0.0190	0.1000				
0.0541	0.1/65				
0.0642	0.1931				
0 0040	0 0115				
0.0940	0.2113				
0.1330	0.2262				
0 1921	0 2431				
0.1721	0.2101				
0.2/01	0.2609				
0.3335	0.2741				
0 3859	0 2821				
0.5055	0.2021				
0.4//3	0.2942				
0.5589	0.3060				
0 6016	0 2112				
0.0010	0.3112				
0.7039	0.3211				
0 8026	0 3301				
0.0020	0.0001				
0.8855	0.33/4				
1.0256	0.3470				
1 1597	0 3543				
1 0 4 1 0	0.0010				
1.3413	0.3591				
1.4875	0.3636				
1 7600	0 3673				
1.7690	0.3073				
2.0407	0.3708				
2.3113	0.3733				
2 6939	0 3754				
2.0939	0.3734				
99	199				
C *********	* * * * * * * * * * * * * * *	· Ferro	- Gap	* * * * * * * * * * * * * * * * * * * *	
96TND R CAP		0 0	0 0	3	
	0 0016	0.0	0.0	5	
-8.4632	-11 /816				
	0.2010				
-7.2427	-0.2799				
-7.2427	-0.2799				
-7.2427 -6.3798	-0.2799 -0.2781				
-7.2427 -6.3798 -5.5130	-0.2799 -0.2781 -0.2755				
-7.2427 -6.3798 -5.5130 -4.6151	-0.2799 -0.2781 -0.2755 -0.2727				
-7.2427 -6.3798 -5.5130 -4.6151	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2 1158	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2530 -0.2476 -0.2408				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2757 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \\ -0.2207 \end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \\ -0.2207 \\ -0.2116 \\ -0.2056 \end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342 -0.7321	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \\ -0.2207 \\ -0.2116 \\ -0.2056 \\ -0.1957 \end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342 -0.7321	$\begin{array}{c} -0.2799\\ -0.2791\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.22530\\ -0.22476\\ -0.22408\\ -0.22334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1957\\ -0.2022\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \end{array}$	-0.2799 -0.2781 -0.2755 -0.2727 -0.2693 -0.2657 -0.2603 -0.2530 -0.2476 -0.2408 -0.2334 -0.2295 -0.2207 -0.2116 -0.2056 -0.1957 -0.1823				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \end{array}$	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2476 \\ -0.2408 \\ -0.22334 \\ -0.2295 \\ -0.2207 \\ -0.22116 \\ -0.2056 \\ -0.1957 \\ -0.1823 \\ -0.1697 \end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342 -0.7321 -0.4833 -0.2948 -0.1727	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2657\\ -0.2603\\ -0.2476\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2791\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.22116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1586\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \end{array}$	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2727 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.22334 \\ -0.2295 \\ -0.2207 \\ -0.2116 \\ -0.2056 \\ -0.1957 \\ -0.1823 \\ -0.1697 \\ -0.1586 \\ -0.1449 \end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2757\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.22334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342 -0.7321 -0.4833 -0.2948 -0.1727 -0.0752 -0.0429 -0.0161	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1324\\ -0.1154\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ -0.0161 \\ -0.0161 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1324\\ -0.1324\\ -0.1154\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \end{array}$	$\begin{array}{c} -0.2799 \\ -0.2781 \\ -0.2755 \\ -0.2757 \\ -0.2693 \\ -0.2657 \\ -0.2603 \\ -0.2530 \\ -0.2476 \\ -0.2408 \\ -0.2334 \\ -0.2295 \\ -0.2207 \\ -0.2116 \\ -0.2056 \\ -0.1957 \\ -0.1823 \\ -0.1586 \\ -0.1449 \\ -0.1324 \\ -0.1154 \\ -0.1004 \end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2757\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.22334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\end{array}$				
-7.2427 -6.3798 -5.5130 -4.6151 -4.1487 -3.5695 -3.1420 -2.6950 -2.4307 -2.1158 -1.7893 -1.6533 -1.3928 -1.1013 -0.9342 -0.7321 -0.4833 -0.2948 -0.1727 -0.0752 -0.0161 0.0006 0.0072 0.0142	$\begin{array}{c} -0.2799\\ -0.2791\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.154\\ -0.1004\\ -0.0933\\ -0.0841\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.004\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2757\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2234\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2657\\ -0.2603\\ -0.2233\\ -0.22334\\ -0.22334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0375 \\ 0.0375 \\ 0.0426 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0212\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \\ 0.0558 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ \end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \\ 0.0558 \\ 0.0727 \\ \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ 0.0087\\ -0.0088\\ -0.0087\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.0088\\ -0.0087\\ -0.0088\\ -0.008$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \\ 0.0558 \\ 0.0737 \\ -0.0737 \\$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2757\\ -0.2693\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ 0.0088\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0087\\ 0.0088\\ 0.08$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \\ 0.0558 \\ 0.0737 \\ 0.0799 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2693\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.22530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ 0.0087\\ 0.0087\\ 0.0188\end{array}$				
$\begin{array}{c} -7.2427 \\ -6.3798 \\ -5.5130 \\ -4.6151 \\ -4.1487 \\ -3.5695 \\ -3.1420 \\ -2.6950 \\ -2.4307 \\ -2.1158 \\ -1.7893 \\ -1.6533 \\ -1.3928 \\ -1.1013 \\ -0.9342 \\ -0.7321 \\ -0.4833 \\ -0.2948 \\ -0.1727 \\ -0.0752 \\ -0.0429 \\ -0.0161 \\ 0.0006 \\ 0.0072 \\ 0.0142 \\ 0.0235 \\ 0.0302 \\ 0.0375 \\ 0.0426 \\ 0.0496 \\ 0.0558 \\ 0.0737 \\ 0.0799 \\ 0.0869 \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2727\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2657\\ -0.2603\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1586\\ -0.1449\\ -0.0087\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0087\\ -0.0188\\ -0.0087\\ 0.0188\\ -0.0087\\ 0.0188\\ -0.0319\\ \end{array}$				
$\begin{array}{c} -7.2427\\ -6.3798\\ -5.5130\\ -4.6151\\ -4.1487\\ -3.5695\\ -3.1420\\ -2.6950\\ -2.4307\\ -2.1158\\ -1.7893\\ -1.6533\\ -1.3928\\ -1.1013\\ -0.9342\\ -0.7321\\ -0.4833\\ -0.2948\\ -0.1727\\ -0.0752\\ -0.0429\\ -0.0161\\ 0.0006\\ 0.0072\\ 0.0142\\ 0.0235\\ 0.0302\\ 0.0375\\ 0.0426\\ 0.0496\\ 0.0558\\ 0.0737\\ 0.0799\\ 0.0869\\ 0.0820\\ \end{array}$	$\begin{array}{c} -0.2799\\ -0.2781\\ -0.2755\\ -0.2755\\ -0.2757\\ -0.2693\\ -0.2657\\ -0.2603\\ -0.2530\\ -0.2476\\ -0.2408\\ -0.2334\\ -0.2295\\ -0.2207\\ -0.2116\\ -0.2056\\ -0.1957\\ -0.1823\\ -0.1697\\ -0.1586\\ -0.1449\\ -0.1324\\ -0.1154\\ -0.1004\\ -0.0933\\ -0.0841\\ -0.0933\\ -0.0841\\ -0.0690\\ -0.0571\\ -0.0421\\ -0.0319\\ -0.0188\\ -0.0087\\ 0.0087\\ 0.0087\\ 0.0188\\ -0.0087\\ 0.0188\\ -0.00319\\ -0.0121\\ \end{array}$				

```
0.0571
     0.0993
             0.0690
0.0841
      0.1060
      0.1153
                0.0933
     0.1223
     0.1289
                0.1004
     0.1456
                0.1154
                0.1324
     0.1724
     0.2047
                0.1449
                0.1586
     0.3022
                0.1697
     0.4243
     0.6128
               0.1823
                0.1957
     0.8616
     1.0637
                0.2056
     1.2308
                0.2116
                0.2207
     1.5223
     1.7828
                0.2295
     1.9188
                0.2334
               0.2408
     2.2453
     2.5602
                0.2476
               0.2530
     2.8245
               0.2603
     3.2715
     3.6990
               0.2657
                0.2693
     4.2782
                0.2727
0.2755
     4.7446
     5.6425
                0.2781
     6.5093
     9999
/SWITCH
C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
 CARG R3 .0321 1.E3
                                                                            0
 R4
      DEF
                   -1.
                             .25
                                                                            0
/SOURCE
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14FONT 0 311.7 60. -1. 1.E3
                                                                -1. 1.E3
60IND 1 0
                                                                         1.E3
60IND 2 0
                                                                         1.E3
60IND R1 0
                                                                         1.E3
60IND R2 0
                                                                         1.E3
60REA_1 0
60IND 3 0
                                                                         1.E3
                                                                         1.E3
/OUTPUT
 CARG IND R CAP CAP CARG REA
BLANK TACS
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
```

6.17 – Roteiro em ATP da Estrutura Simétrica com elemento 96 e com dual eletromagnético

500 1	. 1	1	1	0	0	1	0
/TACS							
TACS HYBRID							
/TACS							
90IND							1.E3
1RET +IND					1.		
1.							
	1.						
90CARG							1.E3
1JUG_2 +CARG					1.		
⊥.	1						
000375	1.						1 1 2
90CAP					1		1.63
1JUG +CAP					1.		
1.	1						
90PEN	1.						1 53
1RFA 1 +RFA					1		1.05
					±•		
1.	1						
90TND R	±•						1 E.3
1 IND R1 +IND R	1				1.		1.10
1.							
	1.						
C 1	2	3	4	5		6	7 8
C 34567890123456	78901234567	39012345	578901234	456789012	234567890	012345678	901234567890
/BRANCH							
C < n1 >< n2 > <r< td=""><td>ef1><ref2><</ref2></td><td>R >< L</td><td>>< C 🔅</td><td>></td><td></td><td></td><td></td></r<>	ef1> <ref2><</ref2>	R >< L	>< C 🔅	>			
C < n1 >< n2 > <r< td=""><td>ef1><ref2><</ref2></td><td>R >< A</td><td>>< B 2</td><td><pre>><leng><></leng></pre></td><td>><>0</td><td></td><td></td></r<>	ef1> <ref2><</ref2>	R >< A	>< B 2	<pre>><leng><></leng></pre>	><>0		
FONT FONT R		.06		-			0
FONT_RIND -		ļ	5.5				3
C *****	*****	**** Juq	go 2 ***;	* * * * * * * * *	******	* * * * * * * * * *	* * * * * * * * * * * *
96IND CAP		0.0	0.0				3
-3.4699	-0.5639						
-2.7718	-0.5568						
-2.0854	-0.5438						
-1.3055	-0.5185						
-1.0821	-0.4997						
-0.7710	-0.4556						
-0.5797	-0.4226						
-0.3884	-0.3837						
-0.2774	-0.3569						
-0.1//1	-0.3327						
-0.0919	-0.3061						
-0.0233	-0.2845						
0.0013	-0.2203						
0.0033	-0 19/1						
0.0096	-0 1618						
0.0000	-0 1279						
0 0124	-0 0930						
0.0132	-0.0640						
0.0153	-0.0226						
0.0200	0.0226						
0.0220	0.0640						
0.0229	0.0930						
0.0243	0.1279						
0.0256	0.1618						
0.0275	0.1941						
0.0297	0.2203						
0.0340	0.2486						
0.0585	0.2845						
0.1271	0.3061						
0.2123	0.3327						
0.3126	0.3569						
0.4236	0.3837						
0.6149	0.4226						

0 0062	0 1556				
0.8082	0.4550				
1.11/3	0.4997				
1.3408	0.5185				
2.1206	0.5438				
2 8070	0 5568				
2.0070	0.5500				
3.3031	0.3639				
9999					
IND R CAP		.07		3	3
CAP CARG			2	. 22E5 3	3
C **********	******	* Po-	+ ância		*
		IVEC		Gap	- -
IND IND_R			3.1	3	5
C **********	******	*** E	Retorno	***************************************	٤
96IND CARG		0.0	0.0		3
-12 4088	-0 7519				
-0.0124	-0 7424				
5.5124	0.7424				
-/.45//	-0.7250				
-4.6688	-0.6913				
-3.8697	-0.6663				
-2.7573	-0.6075				
-2 0731	-0 5634				
1 2000	0.5054				
-1.3889	-0.5116				
-0.9920	-0.4759				
-0.6332	-0.4436				
-0.3287	-0.4081				
-0 0832	-0 3793				
0.0032	0 2215				
0.0045	-0.3313				
0.0197	-0.2938				
0.0275	-0.2588				
0.0343	-0.2158				
0.0390	-0.1705				
0 0442	-0 1241				
0.0472	0.1241				
0.0473	-0.0833				
0.0546	-0.0301				
0.0714	0.0301				
0.0787	0.0853				
0 0818	0 1241				
0.0010	0.1705				
0.0870	0.1705				
0.0917	0.2158				
0.0985	0.2588				
0.1063	0.2938				
0.1215	0.3315				
0 2092	0 3793				
0.2092	0.3793				
0.4547	0.4081				
0.7592	0.4436				
1.1180	0.4759				
1.5149	0.5116				
2.1991	0.5634				
2 8833	0 6075				
2.00000	0.0070				
3.995/	2000.0				
4.7948	0.6913				
7.5837	0.7250				
10.0384	0.7424				
12 5348	0 7519				
9999		70			2
CARG		_ / 2 .			5
DEF	2	5.25		3	3
R3 R4		.001		3	3
C *******	* * * * * * * * * * *	****	Jugo 2	* * * * * * * * * * * * * * * * * * * *	۲
-		0 0	0 0		3
96TND CAP					2
96IND CAP	0 5620	0.0	0.0		
96IND CAP -3.4699	-0.5639	0.0	0.0		
96IND CAP -3.4699 -2.7718	-0.5639 -0.5568	0.0	0.0		
96IND CAP -3.4699 -2.7718 -2.0854	-0.5639 -0.5568 -0.5438	0.0	0.0		
96IND CAP -3.4699 -2.7718 -2.0854 -1.3055	-0.5639 -0.5568 -0.5438 -0.5185	0.0	0.0		
96IND CAP -3.4699 -2.7718 -2.0854 -1.3055 -1.0821	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997	0.0	0.0		
96IND CAP -3.4699 -2.7718 -2.0854 -1.3055 -1.0821 -0.7710	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556	0.0	0.0		
96IND CAP -3.4699 -2.7718 -2.0854 -1.3055 -1.0821 -0.7710	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556	0.0			
96IND CAP -3.4699 -2.7718 -2.0854 -1.3055 -1.0821 -0.7710 -0.5797	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226	0.0			

	-0.2774	-0.3569							
	-0.1771	-0.3327							
	-0.0919	-0.3061							
	-0.0233	-0.2845							
	0.0013	-0.2486							
	0 0055	-0 2203							
	0 0077	-0 1941							
	0.0096	-0 1618							
	0.0090	0.1010							
	0.0109	-0.1279							
	0.0124	-0.0930							
	0.0132	-0.0640							
	0.0153	-0.0226							
	0.0200	0.0226							
	0.0220	0.0640							
	0.0229	0.0930							
	0.0243	0.1279							
	0.0256	0.1618							
	0.0275	0.1941							
	0.0297	0.2203							
	0.0340	0.2486							
	0.0585	0.2845							
	0.1271	0.3061							
	0.2123	0.3327							
	0.3126	0.3569							
	0.4236	0.3837							
	0.6149	0.4226							
	0.8062	0.4556							
	1 1173	0 4997							
	1 3408	0.5185							
	2 1206	0.5139							
	2.1200	0.5450							
	2.0070	0.5500							
	3.3031	0.0009							
	(1(1(1))								
	° ++++++++++++++++++++++++++++++++++++		ىلە بايە بايە بايە	T 1	نه بان بان بان بان بان بان بان بان	ماه ماه ماه ماه ماه ماه ماه ماه ما	ﻪ		ىلە يايە يايە يايە يايە يا
(9999 C *********************************	* * * * * * * * * * *	****	Jugo 1	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	******	*****
(9999 C ********************** 96CARG CAP	*******	**** 0.0	Jugo 1 0.0	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	***** 3
0	9999 C **************** 96CARG CAP -4.3890	-0.5639	***** 0.0	Jugo 1 0.0	******	* * * * * * * *	* * * * * * * * *	* * * * * * * * *	***** 3
0	9999 C ************** 96CARG CAP -4.3890 -3.5060	-0.5639 -0.5568	**** 0.0	Jugo 1 0.0	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	*****	***** 3
0	9999 C ************** 96CARG CAP -4.3890 -3.5060 -2.6378	-0.5639 -0.5568 -0.5438	***** 0.0	Jugo 1 0.0	******	* * * * * * * *	*****	* * * * * * * * *	***** 3
0	9999 C ************* 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514	-0.5639 -0.5568 -0.5438 -0.5185	***** 0.0	Jugo 1 0.0	*****	****	******	****	***** 3
0	9999 C ************* 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514 -1.3687	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997	***** 0.0	Jugo 1 0.0	*****	****	****	*****	***** 3
0	9999 C ************* 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514 -1.3687 -0.9753	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556	****	Jugo 1 0.0	*****	****	****	*****	***** 3
	9999 C ************** 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514 -1.3687 -0.9753 -0.7333	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226	*****	Jugo 1 0.0	*****	****	* * * * * * * *	****	***** 3
	9999 C ************** 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514 -1.3687 -0.9753 -0.7333 -0.4913	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	9999 C *************** 96CARG CAP -4.3890 -3.5060 -2.6378 -1.6514 -1.3687 -0.9753 -0.7333 -0.4913 -0.3509	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	9999 C *********************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	9999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ********************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3227 -0.3061 -0.2845	***** 0.0	Jugo 1 0.0	*****	***	****	****	***** 3
	99999 C ********************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486	*****	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3227 -0.3061 -0.2845 -0.2486 -0.2203	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618	***** 0.0	Jugo 1 0.0	******	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279	***** 0.0	Jugo 1 0.0	******	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930	***** 0.0	Jugo 1 0.0	******	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640	***** 0.0	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226	*****	Jugo 1 0.0	*****	****	****	****	***** 3
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0226	*****	Jugo 1 0.0	*****	****	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2485 -0.2485 -0.2485 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0226 0.0226 0.0640	*****	Jugo 1 0.0	*****	***	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2486 -0.2485 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0226 0.0226 0.0226 0.0226 0.0930	*****	Jugo 1 0.0	*****	***	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0226 0.0640 0.0930 0.1279	*****	Jugo 1 0.0	*****	***	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0226 0.0226 0.0640 0.0930 0.1279 0.1618	*****	Jugo 1 0.0	*****	***	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 0.0226 0.0930 0.0930 0.1279 0.1618 0.1941	*****	Jugo 1 0.0	*****	***	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 0.0226 0.0930 0.0226 0.0930 0.1279 0.1618 0.1941 0.2203	*****	Jugo 1 0.0	*****	****	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.0226 0.0930 0.0640 0.0930 0.1279 0.1618 0.1941 0.2203 0.1941 0.2203 0.2486	*****	Jugo 1 0.0	*****	****	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0640 0.0930 0.1279 0.1618 0.1941 0.2203 0.1941 0.2203 0.2486 0.2845	*****	Jugo 1 0.0	****	****	****	****	*****
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0640 0.0226 0.0640 0.0226 0.0640 0.0226 0.0640 0.0930 0.1279 0.1618 0.1279 0.1618 0.1279 0.1618 0.1279 0.1618 0.1279 0.1618 0.1279 0.1618 0.1279 0.1618 0.2486 0.2845 0.3061	*****	Jugo 1 0.0	*****	****	****	****	******
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0640 -0.0226 0.0640 0.0226 0.0226 0.0640 0.0226 0.0226 0.0640 0.0226 0.0227 0.02203 0.0227 0.02203 0.0227 0.02203 0.0227 0.02203 0.0227	*****	Jugo 1 0.0	*****	****	****	****	******
	99999 C ************************************	-0.5639 -0.5568 -0.5438 -0.5185 -0.4997 -0.4556 -0.4226 -0.3837 -0.3569 -0.3327 -0.3061 -0.2845 -0.2486 -0.2203 -0.1941 -0.1618 -0.1279 -0.0930 -0.0640 -0.0226 0.0640 -0.0226 0.0640 0.0226 0.0226 0.0640 0.0226 0.0640 0.0226 0.0260000000000	*****	Jugo 1 0.0	*****	****	****	****	******

0.5358	0.3837									
0 7778	0 4226									
1 0100	0.4550									
1.0190	0.4336									
1.4133	0.4997									
1.6959	0.5185									
2 6824	0 5438									
2.0021	0.5150									
3.5506	0.5568									
4.4336	0.5639									
9999										
○ **********	******	****	Jugo	1 ***	*****	*****	*****	******	* * * * * * * *	******
		0 0	ougo	, ±						2
96CARG CAP		0.0	0.0)						3
-4.3890	-0.5639									
-3.5060	-0.5568									
-2 6378	-0 5438									
2.0570	0.5150									
-1.6514	-0.5185									
-1.3687	-0.4997									
-0.9753	-0.4556									
-0 7333	-0 1226									
0.7555	0.4220									
-0.4913	-0.383/									
-0.3509	-0.3569									
-0.2240	-0.3327									
-0 1163	-0 3061									
0.1105	0.3001									
-0.0294	-0.2845									
0.0016	-0.2486									
0.0070	-0.2203									
0 0007	_0 10/1									
0.0097	-0.1941									
0.0121	-0.1618									
0.0138	-0.1279									
0 0156	-0 0930									
0.0167	0.0530									
0.0107	-0.0640									
0.0193	-0.0226									
0.0252	0.0226									
0.0278	0.0640									
0.0200	0.0010									
0.0289	0.0930									
0.0308	0.1279									
0.0324	0.1618									
0 0348	0 1941									
0.0010	0.1011									
0.0376	0.2203									
0.0430	0.2486									
0.0740	0.2845									
0 1608	0 3061									
0.1000	0.3001									
0.2685	0.3327									
0.3954	0.3569									
0.5358	0.3837									
0 7778	0 1226									
0.7770	0.4220									
1.0198	0.4556									
1.4133	0.4997									
1.6959	0.5185									
2 6824	0 5438									
2.0021	0.5150									
3.5506	0.5568									
4.4336	0.5639									
9999										
○ ***********	******	* * * *	RNS *	*****	****	*****	*****	******	* * * * * * * *	******
OCCADO DEA		0 0	0 0	`						2
90CARG REA		0.0	0.0)						3
-33.7033	-0.2914									
-26.9444	-0.2877									
-20.2986	-0,2809									
-12 7/78	-0 2670									
10 5044	0.2079									
-10.5844	-0.2582									
-7.5726	-0.2354									
-5.7203	-0.2183									
_3 8670	_0 1000									
-3.00/9	0.1902									
-2.7933	-0.1844									
-1.8219	-0.1719									
-0.9975	-0.1581									
_0 2220	_0 1470									
-0.3329	-0.14/0									
-0 0954	-0.1285									

-0.0544 -0.0332 -0.0148 -0.0020 0.0121 0.0206 0.0404 0.0856 0.1054 0.1139 0.1280 0.1408 0.1592 0.1804 0.2214 0.4589 1.1235 1.9479 2.9193 3.9939 5.8463 7.6986 10.7104 12.8738 20.4246 27.0704 33.8293 9999	$\begin{array}{c} -0.1138\\ -0.1003\\ -0.0836\\ -0.0661\\ -0.0481\\ -0.0330\\ -0.0117\\ 0.0117\\ 0.0330\\ -0.0117\\ 0.0330\\ 0.0481\\ 0.0661\\ 0.0836\\ 0.1003\\ 0.1138\\ 0.1285\\ 0.1470\\ 0.1581\\ 0.1719\\ 0.1844\\ 0.1982\\ 0.2183\\ 0.2354\\ 0.2582\\ 0.2679\\ 0.2809\\ 0.2877\\ 0.2914 \end{array}$	07		2
RET JUG_2 JUG REA_1 IND R1		1.E6 1.E6 1.E6 1.E6 1.E6 1.E6		2 2 2 2 2 2 2
C ************************************	-0.2914 -0.2877 -0.2809 -0.2679 -0.2582	** Ferro - Gap 0.0 0.0	******	***************************3
-2.0731 -1.3889 -0.9920 -0.6332 -0.3287 -0.0832 0.0045 0.0197	-0.2354 -0.2183 -0.1982 -0.1844 -0.1719 -0.1581 -0.1470 -0.1285 -0.1138 -0.1003			

1.11800.18441.51490.19822.19910.21832.88330.2354 3.9957 0.2582 4.7948 0.2679 0.2809 7.5837 10.03840.287712.53480.2914 9999 /SWITCH C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type > CARG R3 .0441 1.E3 0 R4 DEF -1. .25 0 /SOURCE 60JUG 0 1.E3 60REA 1 0 1.E3 60IND_R1 0 1.E3 /OUTPUT CAP CARG IND REA BLANK TACS BLANK BRANCH BLANK SWITCH BLANK SOURCE BLANK OUTPUT BLANK PLOT BEGIN NEW DATA CASE BLANK

ANEXOS

7.1 - Parâmetros elétricos de células capacitivas

Potência Nominal	300kvar	400kvar
Potência máxima de funcionamento (kVAr)	432	576
Tensão nominal (kV)	4,16	8,66
Tensão máxima de funcionamento (kV)	4,576	9,526
Corrente nominal (A)	72,12	46,2
Capacitância nominal (μF)	45,9	14,1
Impedância X_c (Ω)	57,69	187,49

Tabela 7.1 – Parâmetros elétricos do Capacitor.

7.2 – Desenho de projeto da Estrutura Assimétrica do protótipo de bancada – ARMTRS – 380V

Figura 7.1 – Desenho das dimensões físicas de projeto do protótipo de bancada 380V para a Estrutura Assimétrica (todas as unidades estão em milímetros).

Figura 7.2 – Desenho da arquitetura dos enrolamentos do protótipo de bancada 380V para a Estrutura Assimétrica (todas as unidades estão em milímetros).

Dados de projeto:

- Núcleo constituído com chapas de aço silicioso de grão orientado com 0,27mm de espessura (M125-27-E-004);
- Tensão de saturação: 60V_{Pico};
- Coluna do RNS, RLS, Retorno e jugo com seção transversal retangular;
- O enrolamento N1 envolve a bobina do RNS e é formado por 100 espiras disposta em uma camada composta por um condutor (16 AWG) com seção circular de 1,31mm² e com diâmetro de 1,37 mm;
- O enrolamento N2 envolve a bobina do RLS e é formado por 100 espiras disposta em uma camada composta por um condutor (16 AWG) com seção circular de 1,31mm² e com diâmetro de 1,37 mm;
- Massa total de ferro é de 11,2 kg e a massa total de cobre é de 0,388 kg.

7.3 – Desenho de projeto da Estrutura Simétrica do protótipo de bancada – ARMTRS – 380V

Figura 7.3 – Desenho das dimensões físicas de projeto do protótipo de bancada 380V para a Estrutura Assimétrica (todas as unidades estão em milímetros).

Figura 7.4 – Desenho da arquitetura dos enrolamentos do protótipo de bancada 380V para a Estrutura Assimétrica (todas as unidades estão em milímetros).

Dados de projeto:

- Núcleo constituído com chapas de aço silicioso de grão orientado com 0,30mm de espessura (M125-27-E-004);
- Tensão de saturação: 55 V_{Pico};
- Coluna do RNS, RLS, Retorno e jugo com seção transversal retangular;
- O enrolamento N1 envolve a bobina do RNS e é formado por 132 espiras disposta em três camada composta por um condutor (9 AWG) com seção circular de 6,634 mm² e com diâmetro de 3,01 mm;
- O enrolamento N2 envolve a bobina do RLS e é formado por 132 espiras com uma camada composta por um condutor (9 AWG) com seção circular de 6,634 mm² e com diâmetro de 3,01 mm;
- Massa total de ferro é de 12,4 kg e a massa total de cobre é de 3,3 kg.

7.4 – Curva de Magnetização e perdas do protótipo de bancada – 380V fornecida pelo fabricante

Figura 7.5 – (*a*) Curva de magnetização (B x H) e (b) Curva de perdas magnéticas.

	Curva		Curva de Perdas				
B (T)	H(A.m/e)	B (T)	H(A.m/e)	Ps (W/kg)	B (T)	Ps (W/kg)	B (T)
0,100	9,478	0,850	63,937	0,0070	0,100	0,4204	0,850
0,150	12,682	0,900	72,222	0,0160	0,150	0,4666	0,900
0,200	15,619	0,950	81,940	0,0284	0,200	0,5161	0,950
0,250	18,282	1,000	93,256	0,0439	0,250	0,5679	1,000
0,299	20,884	1,050	107,180	0,0624	0,299	0,6242	1,050
0,350	23,406	1,100	123,120	0,0837	0,350	0,6836	1,100
0,400	25,901	1,149	141,820	0,1074	0,400	0,7467	1,149
0,450	28,574	1,200	163,870	0,1331	0,450	0,8123	1,200
0,500	31,345	1,250	189,110	0,1616	0,500	0,8839	1,250

Tabela 7.2 - Curva B x H e de perdas fornecida pelo fabricante com 29 pontos.

0,550	34,408	1,301	217,450	0,1923	0,550	0,9602	1,301
0,600	37,855	1,350	249,050	0,2251	0,600	1,0387	1,350
0,650	41,651	1,400	284,420	0,2594	0,650	1,1219	1,400
0,700	46,185	1,450	325,030	0,2966	0,700	1,2127	1,450
0,750	51,111	1,500	371,820	0,3352	0,750	1,3019	1,500
0,800	57,088			0,3767	0,800		

7.5 – Resultados de ensaio para obtenção das características da impedância equivalente do sistema

O ensaio para a obtenção das características da impedância equivalente foi realizado conforme descrito em [3].

Equipamento usado para medições:

	Tensão nos terminais do RLS – (V _{RMS})	Corrente no circuito – (A _{RMS})	Reatância Equivalente do Sistema (Ω)
Medida 1	5,55	1,07	5,19
Medida 2	21,77	3,98	5,47
Medida 3	37,53	7,00	5,36
Medida 4	56,22	10,30	5,46
Medida 5	73,3	13,50	5,43
Medida 6	89,7	16,50	5,44
Medida 7	106,6	19,60	5,44
Medida 8	121,3	22,30	5,44
Medida 9	222,13	40,90	5,43
Média			5,44

Tabela 7.3 – *Resultado das medidas do ensaio para obter a reatância equivalente do sistema.*

Figura 7.6 - Característica v x i da impedância equivalente do sistema.

7.6 – Resultados de ensaio para obtenção da resistência que representa a carga do sistema

O ensaio para a obtenção da característica da resistência que representa a carga foi realizado conforme descrito em [3].

Equipamento usado para medições:

	Tensão nos terminais da carga – (V _{RMS})	Corrente no circuito $-(A_{RMS})$	Resistência da carga (Ω)
Medida 1	8,40	0,12	71,13
Medida 2	10,90	0,15	72,67
Medida 3	25,30	0,35	71,43
Medida 4	49,50	0,69	71,56
Medida 5	58,90	0,82	72,24
Medida 6	72,70	1,01	72,19
Medida 7	98,90	1,37	72,45
Medida 8	115,90	1,61	72,08

Tabela 7.4 – *Resultado das medidas do ensaio para obter a resistência que representa a carga do sistema.*

Medida 9	150,60	2,09	72,16
Medida 10	190,80	2,64	72,19
Medida 11	219,90	3,05	72,03
Média			72,16

Figura 7.7- Característica v x i da carga.

7.7 – Resultados de ensaio para obtenção da resistência que representa o defeito

O ensaio para a obtenção da característica da resistência que representa o defeito foi realizado conforme descrito em [3] e os resultados mostram as características das duas resistências usadas em paralelo.

Equipamento usado para medições:

defeno.						
	$V_{RI}(V_{RMS})$	$I_1(A_{RMS})$	$R_1(\Omega)$	V_{R2} (V_{RMS})	$I_2(A_{RMS})$	$R_{2}\left(arDminute{\Omega} ight)$
Medida 1	57,25	1,12	50,98	50,30	1,01	49,80
Medida 2	69,3	1,39	49,89	68,60	1,34	51,19
Medida 3	75,80	1,53	49,51	72,10	1,45	49,59
Medida 4	86,70	1,73	50,09	87,30	1,71	51,20
Medida 5	98,00	1,96	49,90	99,50	1,93	51,50

 Tabela 7.5 - Resultado das medidas do ensaio para obter a resistência que representa o

 dafaito

Medida 6	110,90	2,19	50,59	111,20	2,16	51,60
Medida 7	145,80	2,86	51,00	143,20	2,80	51,20
Medida 8	190,30	3,81	50,00	191,20	3,82	50,00
Medida 9	219,30	4,30	51,00	220,30	4,30	51,20
		Média	50,09		Média	51,20

Figura 7.8 - Característica v x i da defeito.

7.8 – Resultados de ensaio para obtenção da reatância capacitiva do BCS

O ensaio para a obtenção da característica da resistência que representa o defeito foi realizado conforme descrito em [3] e os resultados mostram as características das dez células usadas em paralelo.

Placa de identificação das células capacitivas:

- Marca: WEG;
- Capacitância 58,9 µF;
- Potência Nominal de 3,33 kvar em 380 Volts/60Hz;
- Erro: ± 5%.

Equipamento usado para medições:

	Tensão nos terminais	Corrente no circuito	Resistência da carga
	da carga (V _{RMS})	(A_{RMS})	(Ω)
Medida 1	25,50	5,66	4,50
Medida 2	75,50	17,82	4,24
Medida 3	119,50	27,37	4,37
Medida 4	150,50	33,26	4,52
Média			4,44

 Tabela 7.6 - Resultado das medidas do ensaio para obter a reatância capacitiva do BCS.

Figura 7.9 - Característica v x i do BCS.

7.9 – Resultados de ensaio para obtenção das características do Reator Naturalmente Saturado (RNS)

Os ensaios para a obtenção da característica do RNS foi realizado conforme descrito em [3].

	Tensão nos terminais	Corrente no circuito	Resistência do	
	do $RNS - (V_{CC})$	$-(A_{CC})$	reator linear ($oldsymbol{\Omega}$)	
Medida 1	0,220	0,780	0,282	
Medida 2	0,350	1,220	0,287	
Medida 3	0,550	1,850	0,297	
Medida 4	0,750	2,600	0,288	
Média			0,289	

Tabela 7.7 – Resultados das medidas do ensaio para obter a resistência do RNS para a Estrutura Assimétrica.

	Tensão nos terminais	Corrente no circuito	Resistência do	
	do RNS– (V_{CC})	$-(A_{CC})$	reator linear ($arOmega$)	
Medida 1	0,072	0,97	0,0742	
Medida 2	0,125	1,68	0,0744	
Medida 3	0,19	2,55	0,0745	
Medida 4	0,228	3,07	0,0742	
Média			0,0743	

Tabela 7.8 – Resultados das medidas do ensaio para obter a resistência do RNS para a Estrutura Simétrica.

Tabela 7.9 – Resultado das medidas do ensaio para obter as perdas totais no ferro do RNS

	Tensão nos terminais do RNS (V)	Corrente no circuito (A)	Potência ativa total do RNS (W)	Perdas ôhmicas – RxI ² (W)	Perdas no Ferro (W)	Resistência das perdas totais no ferro (Ω)
Medida 1	21,350	0,116	1,640	0,003	1,637	278,530
Medida 2	30,850	0,196	3,270	0,010	3,260	291,931
Medida 3	40,380	0,390	5,400	0,039	5,361	304,163
Medida 4	51,100	1,415	9,000	0,517	8,483	307,801
Medida 5	60,800	3,240	14,000	2,708	11,292	327,379
Medida 6	69,300	5,610	22,000	8,120	13,880	345,996
Medida 7	73,850	7,630	30,000	15,020	14,980	364,073
Medida 8	78,000	9,840	41,000	24,981	16,019	379,799
Média						324,959

Tabela 7.10 – Resultado das medidas do ensaio para obter as características $\lambda x i e v x i$ do RNS da Estrutura Assimétrica.

	Corrente de pico do circuito (A _{Pico})	Fluxo de enlace (Wb.esp)	Tensão de pico (V _{Pico}) – λ*377			
Medida 1	0,0325	0,0087	3,2784			
Medida 2	0,0551	0,0188	7,0850			
Medida 3	0,0806	0,0319	12,0354			
Medida 4	0,0990	0,0421	15,8582			
Medida 5	0,1258	0,0571	21,5150			
Medida 6	0,1499	0,0690	25,9995			
Medida 7	0,1838	0,0841	31,7235			

Medida 8	0,2093	0,0933	35,1609
Medida 9	0,2333	0,1004	37,8497
Medida 10	0,2941	0,1154	43,5037
Medida 11	0,3917	0,1324	49,9171
Medida 12	0,5090	0,1449	54,6097
Medida 13	0,8640	0,1586	59,8062
Medida 14	1,3080	0,1697	63,9684
Medida 15	1,9937	0,1823	68,7456
Medida 16	2,8987	0,1957	73,7812
Medida 17	3,6340	0,2056	77,5157
Medida 18	4,2420	0,2116	79,7581
Medida 19	5,3025	0,2207	83,1892
Medida 20	6,2499	0,2295	86,5352
Medida 21	6,7448	0,2334	87,9855
Medida 22	7,9325	0,2408	90,7876
Medida 23	9,0779	0,2476	93,3280
Medida 24	10,0394	0,2530	95,3944
Medida 25	11,6655	0,2603	98,1196
Medida 26	13,2209	0,2657	100,1730
Medida 27	15,3278	0,2693	101,5276
Medida 28	17,0246	0,2727	102,8036
Medida 29	20,2909	0,2755	103,8635
Medida 30	23,4441	0,2781	104,8384
Medida 31	26,5832	0,2799	105,5376
Medida 32	31,0232	0,2816	106,1545

Figura 7.10 - Característica v x i do RNS para a Estrutura Assimétrica.

Figura 7.11 - Característica $\lambda x i$ do RNS para a Estrutura Assimétrica.

Tabela 7.11 – Resultado das medidas do ensaio para obter as características $\lambda x i e v x i$ do RNS da Estrutura Simétrica.

	Corrente de pico do	Fluxo de enlace	Tensão de pico (V _{Pico}) –
	circuito (A _{Pico})	(Wb.esp)	λ*377
Medida 1	0,0226	0,0117	4,4047
Medida 2	0,0424	0,0330	12,4589
Medida 3	0,0509	0,0481	18,1271
Medida 4	0,0651	0,0661	24,9105
Medida 5	0,0778	0,0836	31,5247
Medida 6	0,0962	0,1003	37,8117
Medida 7	0,1174	0,1139	42,9239
Medida 8	0,1584	0,1285	48,4395
Medida 9	0,3960	0,1470	55,4157
Medida 10	1,0607	0,1582	59,6303
Medida 11	1,8851	0,1719	64,8089
Medida 12	2,8567	0,1844	69,5273
Medida 13	3,9315	0,1983	74,7480
Medida 14	5,7841	0,2184	82,3205
Medida 15	7,6368	0,2354	88,7617
Medida 16	10,6490	0,2582	97,3542
Medida 17	12,8128	0,2679	101,0026
Medida 18	20,3647	0,2810	105,9303
Medida 19	27,0115	0,2877	108,4787
Medida 20	33,7714	0,2914	109,8572

Figura 7.12 - Característica v x i do RNS para a Estrutura Simétrica.

Figura 7.13 - Característica $\lambda x i$ do RNS para a Estrutura Simétrica.

Equipamentos usados para medições:

- Multímetros FLUKE tipo 289;
- Osciloscópio TEKTRONIX tipo TPS 2024.

7.10 – Resultados de ensaio para obtenção das características do Reator Linear Série (RLS)

Os ensaios para a obtenção da característica do RLS foi realizado conforme descrito em [3].

	Tensão nos terminais	Corrente no circuito	Resistência do
	do $RLS - (V_{CC})$	$-(A_{CC})$	reator linear ($arOmega$)
Medida 1	0,130	0,480	0,271
Medida 2	0,260	0,810	0,321
Medida 3	0,420	1,430	0,294
Medida 4	0,710	2,450	0,290
Média			0,294

Tabela 7.12 – Resultados das medidas do ensaio para obter a resistência do RLS para a Estrutura Assimétrica.

Tabela 7.13 – *Resultados das medidas do ensaio para obter a resistência do RLS para a Estrutura Simétrica.*

	Tensão nos terminais	Corrente no circuito	Resistência do
	do RNS-(V_{CC})	$-(A_{CC})$	reator linear ($arOmega$)
Medida 1	0,081	1,08	0,0750
Medida 2	0,146	1,94	0,0753
Medida 3	0,179	2,38	0,0752
Medida 4	0,230	3,05	0,0754
Média			0,0752

Tabela 7.14 – *Resultado das medidas do ensaio para obter a indutância dos RLS do ARMTRS para a Estrutura Assimétrica.*

	Tensão nos terminais	Corrente no circuito (A)	Reatância do RLS (Ω)
	do RLS (V)		
Medida 1	3,1891	0,9758	3,2681
Medida 2	4,6146	1,4071	3,2794
Medida 3	11,3137	3,4436	3,2854
Medida 4	14,3967	4,3727	3,2924
Medida 5	18,7242	5,6993	3,2854
Medida 6	24,4376	7,4388	3,2852
Medida 7	29,8116	9,0793	3,2835
Medida 8	34,0967	10,3945	3,2803
Medida 9	37,9009	11,5400	3,2843
Medida 10	43,4164	13,2229	3,2834
Medida 11	48,8469	15,2311	3,2071
Medida 12	51,8734	16,2069	3,2007
Medida 13	54,5886	17,1120	3,1901
Medida 14	57,2756	17,9747	3,1865

Medida 15	60,6273	19,1202	3,1709
Medida 16	63,9366	20,2091	3,1638
Medida 17	66,3266	21,0294	3,1540
Medida 18	70,0319	22,2456	3,1481
Medida 19	74,4583	23,8012	3,1283
Medida 20	78,3474	25,0174	3,1317
Medida 21	81,4587	26,1488	3,1152
Medida 22	84,4285	27,2378	3,0997
Medida 23	87,9641	28,5247	3,0838
Medida 24	91,6410	29,8965	3,0653
Média			3,2007

Figura 7.14 - Característica v x i do RLS para a Estrutura Assimétrica.

	Tensão nos terminais	Corrente no circuito (A)	Reatância do RLS ($oldsymbol{\Omega}$)
	do RLS (V)		
Medida 1	2,2670	0,6251	3,6267
Medida 2	10,1116	2,7506	3,6761
Medida 3	16,6453	4,5566	3,6530
Medida 4	23,2780	6,3357	3,6741
Medida 5	29,6985	8,1176	3,6585
Medida 6	35,8362	9,8146	3,6513
Medida 7	39,9091	10,9177	3,6554
Medida 8	48,9459	13,5482	3,6127
Medida 9	54,6594	15,5846	3,5073
Medida 10	60,3728	17,4231	3,4651
Medida 11	65,9872	19,3606	3,4083
Medida 12	72,4077	21,9627	3,2968

Tabela 7.15 – *Resultado das medidas do ensaio para obter a indutância dos RLS do ARMTRS para a Estrutura Simétrica.*

Medida 13	77,2161	23,7022	3,2578
Medida 14	84,5700	26,9408	3,1391
Medida 15	90,3682	29,6561	3,0472
Medida 16	93,3381	31,3955	2,9730
Média			3,5600

Figura 7.15 - Característica v x i do RLS para a Estrutura Simétrica.

Equipamentos usados para medições:

• Multímetros tipo 289 da marca FLUKE.

7.11 – Curva característica $\lambda x i$ usada na modelagem do elemento nonlinear current-dependent inductor (TYPE 96)

A Figura 7.16 mostra a curva característica $\lambda x i$ usada na modelagem do RNS. Ela foi obtida através da curva de histerese (Figura 7.17), das equações 3.18 e 3.22 e os parâmetros do protótipo.

Figura 7.16 – *Curva* λ *x i usada para a modelagem dos protótipos com elemento type 96 sem dualidade eletromagnética* – (\Box) *Estrutura Assimétrica e* (\Diamond)*Estrutura Simétrica.*

Figura 7.17 – Curva de histerese do protótipo de bancada.

7.12 – Curva característica $\lambda x i$ usada na modelagem dos protótipos de bancada com dualidade eletromagnética

As curvas de magnetização usadas na modelagem dos protótipos de bancada com dualidade eletromagnética são mostradas nas Figuras 7.18, 7.19, 7.20 e 7.21 e foram obtidas a partir das Equações 3.18 3.22.

Figura 7.18 – Característica $\lambda x i$ – Para a Estrutura Assimétrica com dualidade eletromagnética – (\Diamond) Retorno, (\Box) Jugo 1, (Δ) Jugo 2 e (x) RNS – elemento type 98.

Figura 7.19 - *Característica* $\lambda x i - Para$ *a Estrutura Assimétrica com dualidade eletromagnética* – (\Diamond) *Retorno,* (\Box) *Jugo 1,* (Δ) *Jugo 2 e (x) RNS elemento type 96*.

Figura 7.20 – *Característica* $\lambda x i$ – *Para a Estrutura Simétrica com dualidade eletromagnética* – (\Diamond) *Retorno,* (\Box) *Jugo 1,* (Δ) *Jugo 2 e (x) RNS* – *elemento type 98.*

Figura 7.21 - *Característica* $\lambda x i - Para$ *a Estrutura Simétrica com dualidade eletromagnética* – (\Diamond) *Retorno,* (\Box) *Jugo 1,* (Δ) *Jugo 2 e (x) RNS elemento type 96*.

7.13 – Resultados de ensaio para auto-regulação da carga conectada a jusante do ARMTRS

	$V_{CARGA-Jusante}(V_{RNS})$	I _{TOTAL-Montante} (A _{RMS})
Medida 1	22,99	0,31
Medida 2	44,05	0,61
Medida 3	64,24	0,91
Medida 4	88,52	1,22
Medida 5	110,40	1,52
Medida 6	130,30	1,82
Medida 7	154,20	2,13
Medida 8	176,00	2,43
Medida 9	195,90	2,74
Medida 10	219,80	3,04

Tabela 7.16 – *Resultados das medidas do ensaio para auto-regulação da carga conectada a jusante do ARMTRS.*

Equipamentos usados para medições:

• Multímetros tipo 289 da marca FLUKE.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] LEÃO, S. E. C. C. Analise do Auto-Regulador Magnético de Tensão (ARMT) para Controle da Tensão em Redes de Distribuição de 13,8 kV. Recife, 2008. Dissertação (Mestrado em Engenharia Elétrica), Centro de Tecnologia e Geociência Universidade Federal de Pernambuco;

[2] ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. *Legislação Básica do Setor Elétrico Brasileiro – Resoluções*. Volume II, Março 2002, p. 506 – 519;

 [3] FREITAS, F. E. F.; 2010. Aplicação Série de Reatores Naturalmente Saturados em Sistemas de Potência. Recife, PE. Dissertação (Mestrado em engenharia elétrica) – Universidade Federal de Pernambuco;

[4] INDUCON. *Manual Inducon – Capacitores de Potência*. Jaguariúna – SP: LAELC
Indústria e Comércio Ltda, p. 39, 1999;

[5] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. *Referências Bibliográficas, IEEE Std 1036. New York, 1992.*

[6] THANAWLA, H. L.; YOUNG, D.J.; T. Saturated Reactors – Some recent applications in power systems. Energy International, Volume 7, Number 11, p. 3, 1970;

[7] LEAL, F. S. *Reatores Saturados com Excitação Paralela*. Dissertação de Mestrado, UFPE, 2000.

[8]MAGNATA DA FONTE, L. A. *Reator Saturado – Alguns aspectos Operacionais e de Projeto*. Dissertação de Mestrado, UFPE, Dezembro 1997.

[9] MARTIGNONI, Alfonso. Transformadores. Porto Alegre: Editora Globo, p.79, 1971;

[10] DEL VECCHIO, Robert M.; POULIN, Bertrand; T. FEGHALI, Pierre; *et al. Transformer Desing Principles: With Applications to Core-Form Power Transformers.* New York, NY: Copyright © by Taylor & Francis, p. 10-15, 2002;

[11] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Transformador de potência*, NBR 5356. Rio de Janeiro, p. 2, 1993;

[12] STAFF, E. E. *Circuitos Magnéticos Y Transformadores*. Cambridge, Massachusetts: Editorial Reverté, S. A., p. 66-82, 1965;

[13] VAN DEN BOSSCHE, Alex; VALCHEV, Vencisslav; FILCHEV, Todor. *Improved* approximation for fringing permeances in gapped inductors. IEEE, Belgium, p. 1, 2002;

[14] PARIKSHITH, B. C.; VINOD, John; BANGALORE, Karnataka. *Higher oder output filter desing for grid connected power converters*. Fifteenth National Power Systems Conference (NPSC), IIT Bombay, p. 617, December 2008;

[15] GROVER, F. W. *Inductance Calculations*. Mineola, New York: Dover Publications, INC. p. 142-143, 2009;

[16] N2A EQUIPAMENTOS. *Manual de operação da chave estatística especial e controlador de potência*. Recife – PE: N2A Equipamentos, 2010;

[17] CHERRY, F. W. The duality of inter-linked eletricic and magnetic circuits and the formation of transformer equivalent circuit, Proc. Phys. Soc of London (B), vol.2, p.101,1949;

[18] KRON, G. *The Equivalent Eletric Circuit Of Rotating Eletric Machinery*, New York,J. Wiley & Sons, 1951;

[19] PRIKLER, L.; HOIDALEN H. K. *The Equivalent Eletric Circuit Of Rotating Eletric Machinery User's Manual – ATPdraw version 3.5*, p. 215-218, 2002; [20] MORK, B. A.; GONZALEZ, F.; ISHCHENKO, D.; et al. Hybrid Transformer Model for Transient Simulation – Part I: Development and Parametrs. IEEE Transactions on power delivery, Vol. 22, NO.1, January, 2007;

[21] COMPANHIA ENERGÉTICA DE PERNAMBUCO – CELPE. *Especificação Regulador de Tensão Monofásico*. THOSHIBA do Brasil, S.A.