UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA

MESTRADO EM ENGENHARIA ELÉTRICA

APLICAÇÃO DE REATORES SATURADOS EM SISTEMAS DE TRANSMISSÃO

por

Dalton de Oliveira Camponês do Brasil

Orientador: Prof. Manoel Afonso de Carvalho Jr.

Tese apresentada à Coordenação do Mestrado em Engenharia Elétrica da Universidade Federal de Pernambuco, em maio de 1996, como parte dos requisitos para obtenção do título de Mestre em Engenharia Elétrica.

AGRADECIMENTOS

Ao Prof. Manoel Afonso de Carvalho Jr. pela dedicação em passar seu conhecimento sobre o assunto, pela sua orientação segura e efetiva e pelo seu esforço constante em me motivar, fundamentais para o desenvolvimento deste trabalho.

À THEMAG Engenharia, particularmente na pessoa do Dr. Angelo Vian, pela colaboração no apoio financeiro necessário para viabilizar a minha participação no programa de mestrado.

Finalmente, à UFPE pelo apoio logístico necessário à conclusão e apresentação desta dissertação.

RESUMO

O controle de tensão em sistemas de transmissão longos é uma questão vital para a flexibilidade, segurança e economicidade dos mesmos. A busca de maior eficácia destes sistemas promoveu o surgimento de novas concepções de linhas de transmissão em EAT, tais como, linhas compactas e de potência natural elevada, que apresentam produção de reativos substancialmente maior que as linhas convencionais. Técnicas convencionais de compensação reativa aplicadas nestas linhas tendem a comprometer a tão buscada eficácia do sistema.

Embora a técnica de saturação magnética de reatores com múltiplos núcleos tenha sido bastante utilizada em compensadores estáticos para sistemas industriais, particularmente para controle de flutuação de tensão, não se conhece nenhuma aplicação específica da mesma como equipamento de compensação reativa instalado diretamente própria linha. Assim surgiu a idéia de investigar, como alternativa de compensação reativa, a substituição dos reatores convencionais por reatores saturados em linhas de transmissão longas.

Os principais objetivos desta tese foram:

- Analisar os princípios básicos e as características de operação dos reatores saturados;
- Desenvolver um modelo de reator saturado para ser utilizado no programa de transitórios eletromagnéticos EMTP-ATP;
- Desenvolver uma aplicação prática em um sistema de transmissão radial em 230 kV considerando a substituição dos reatores convencionais por reatores saturados.

ABSTRACT

Voltage control issue on long transmission power systems has a fundamental importance in system flexibility, security and economic aspects. The need of more efficient systems has been raising new conceptions of EHV transmission lines, such as, compact and high surge impedance loading lines, which produce capacitive reactive power much higher than the conventional ones. The application of traditional means of reactive compensation to these lines might compromise the necessary system efficiency.

Although the magnectic saturation technic of multi-cored reactors has been largely applied in static compensators devices for industrial systems, particularly to control flicker, it is not known any especific application of such technic as a reactive compensation device connected straight to the transmission line. Therefore the idea to investigate the substitution of shunt linear reactors by saturated ones in long transmission lines, as an alternative of reactive compensation, came up.

The basic goals of this thesis were:

- To analyse the basic principles and operating characteristics of saturated reactors;
- To develop a model of a saturated reactor to be used in the EMTP-ATP electromagnetic transient program;
- To develop a practical application for a 230 kV radial transmission system considering the substitution of conventional shunt reactors by saturated ones.

ÍNDICE

	Conteúdo	Pág
1.	INTRODUÇÃO	1
1. i	Objetivos	1
12	Apresentação	2
2.	CONTROLE DE TENSÃO EM LINHAS DE TRANSMISSÃO	3
2.1	Introdução	3
2.2	Controle de Tensão em Linhas de Transmissão Longas	7
2.2.1	Equações e Parâmetros Típicos de Linhas de Transmissão	7
2.2.2	Modelo Básico de uma Linha de Transmissão	10
2.2.3	Sistema Radial Típico	13
2.2.4	Sistema de Transmissão em Vazio	14
2.2.5	Sistema de Transmissão com Carga	22
2.3	Requisitos Para o Controle de Tensão em Linhas	27
2.4	Principais Técnicas de Controle de Tensão em Linhas	29
2.4.1	Reatores e Capacitores em Derivação	29
2.4.2	Compensadores Síncronos	30
2.4.3	Compensadores Estáticos	31
2.4.4	Compensação Série	33
2.4.5	Outras Técnicas	34
2.5	A Idéia de Aplicar Reatores Saturados	35
3.	REATOR SATURADO	37
3.1	Introdução	37
3.2	Reator Saturado Elementar	37
3.3	Reator Saturado do Tipo "Twin-Tripler"	42
3.4	Reator Saturado do Tipo "TrcMe-Triple"	48
3.5	Características de Operação de um Reator Saturado	49
	Tabelas	52

4.	MODELAGEM DE UM REATOR SATURADO NO PROGRAMA ATP	55
4.1	Introdução	55
4.2	Caracterização do Reator Saturado a Ser Modelado e dos Testes Básicos	55
4.3	Parâmetros Básicos do Reator Saturado	57
4.4	Descrição da Modelagem no ATP	60
4.5 4.5.1 4.5.2	Testes do RS Básico Sem Enrolamentos Secundários Com Enrolamentos Secundários	61 61 62
4.6 4.6.1 4.6.2	Levantamento das Características Vxl do RS Característica Vxl sem Capacitor Corretor da Inclinação Característica Vxl com Capacitor Corretor da Inclinação	66 66 70
	Figuras	76
5.	APLICAÇÃO PRÁTICA COM O REATOR SATURADO	90
5.1	Introdução	90
5.2	Caracterização do Sistema de Transmissão	90
5.3 5.3.1 5.3.2	Alternativas de Compensação Reativa Alternativa com Reator e Capacitor em Derivação Alternativa com Reator Saturado	91 91 92
5.4 5.4.1 5.4.2	Análise em Regime Permanente Tensões no Final da Linha Influência de Desequilíbrios no Sistema na Operação do Reator Saturado	93 93 95
5.5 5.5.1 5.5.2 5.5.3	Análise em Regime Transitório Energização de Linha de Transmissão Rejeição de Carga Energização de Transformador	96 96 97 98
5.5.4	Aplicação de Defeito	98
5.6	Conclusões	99
	Figuras	101
6.	CONCLUSÕES GERAIS E PROSSEGUIMENTO DO TRABALHO	117
6.1	Conclusões Gerais	117
6.2	Prosseguimento do Trabalho	1 18
7.	REFERÊNCIA BIBLIOGRÁFICAS	119
	APÊNDICE A - MODELAGEM DE UM REATOR SATURADO BÁSICO NO AIP	121

1. INTRODUÇÃO

O controle de tensão e a compensação de potência reativa em sistemas de transmissão em alta tensão, principalmente quando envolvem longas distâncias, é uma questão vital para a flexibilidade, segurança e economicidade do próprio sistema. Questões como a estabilidade dinâmica, a regulação de tensão e o nível das sobretensões estão intimamente ligadas ao tipo e ao grau de compensação reativa empregada.

A busca de maior eficácia dos sistemas de transmissão, isto é, o cumprimento dos seus objetivos a um mínimo custo, promoveu o surgimento de novas concepções de linhas de transmissão em extra e ultra alta tensão, como, por exemplo, as linhas compactas e as linhas de potência natural elevada. Estas linhas, por sua vez, apresentam uma produção de potência reativa capacitiva substancialmente maior que as linhas de transmissão convencionais. A aplicação de reatores em derivação nestas linhas, para permitir energização das mesmas e auxiliar no controle de tensão no sistema tanto em regime permanente, com em temporário e transitório, embora perfeitamente possível, pode comprometer a tão buscada eficácia do sistema. Desta forma novas técnicas de compensação reativa em linhas de transmissão estão sendo pesquisadas e desenvolvidas, como, por exemplo, a aplicação de pára-raios de óxido metálico em conjunto com manobras super-rápidas das linhas [20].

Embora a aplicação de compensadores estáticos, empregando a técnica de saturação magnética de reatores com múltiplos núcleos, tenha sido bastante utilizada em sistemas industriais e de potência, particularmente para controle de flutuação e controle de tensão, não se conhece nenhuma aplicação específica da mesma como equipamento de compensação reativa instalado na própria linha. Assim surgiu a idéia de investigar, como alternativa de compensação reativa para linhas de transmissão, a substituição dos reatores convencionais das mesmas por reatores saturados, com a seguinte estratégia de operação [05], [08]:

- Para as condições de operação correspondentes a energização da linha e rejeição de carga, em regime permanente, o reator saturado deverá operar no seu limite de absorção como se fora um reator convencional.
- Para condições de emergência do sistema ou quando há abaixamento da tensão de operação do sistema até o nível mínimo permitido, o reator não deve saturar. Assim, é como se fora um reator desconectado.

Com esta alternativa visualiza-se uma economia em equipamentos de suporte de tensão (bancos de capacitores) e uma maior eficiência no controle da tensão do sistema.

1.1 Objetivos

A presente dissertação de mestrado têm os seguintes objetivos:

- Desenvolvimento de um modelo de um reator saturado no programa de transitórios eletromagnéticos EMTP-ATP, verificando viabilidade de utilização do mesmo em simulações de regime permanente e transitório do reator saturado.
- Desenvolvimento de uma aplicação prática, considerando a substituição dos reatores convencionais de uma linha de transmissão em 230 kV por reatores saturados, incluindo uma análise técnica desta alternativa em comparação com outros meios convencionais de compensação reativa.

1.2 Apresentação

O material apresentado nesta tese está organizado em sete capítulos e um apêndice, com o seguinte conteúdo:

- Capítulo 2: Apresenta considerações básicas sobre a compensação reativa e o controle de tensão em linhas de transmissão, bem como o equacionamento geral da regulação de tensão em regime permanente na ponta de uma linha transmissão radial, incluindo algumas aplicações típicas. Além disto, aborda os requisitos básicos e relaciona as principais técnicas utilizadas para o controle de tensão nas linhas de transmissão, bem como introduz a idéia de se aplicar reatores saturados em substituição aos reatores convencionais de linhas.
- Capítulo 3: Este capítulo trata dos conceitos básicos e princípios de funcionamento dos reatores saturados, relaciona os tipos mais usuais, aborda a questão de geração e compensação de harmônicos e apresenta as características de operação em regime permanente do mesmo.
- Capítulo 4: Aborda o desenvolvimento e os testes realizados com a modelagem do reator saturado no programa EMTP-ATP, bem como o levantamento das características de um reator saturado com fonte ideal de tensão, incluindo análise de sensibilidade dos parâmetros mais importantes.
- Capítulo 5: Este capítulo desenvolve uma aplicação prática de um reator saturado em substituição ao reator convencional de uma linha de transmissão radial de 230 kV, incluindo a análise técnica de regime permanente e transitório desta alternativa em comparação com a alternativa com o reator convencional.
- Capítulo 6: Retrata as conclusões gerais obtidas do trabalho e sugere tópicos para uma eventual continuidade de pesquisa sobre o tema.
- Capítulo 7: Relaciona as principais referência bibliográficas consultadas durante o desenvolvimento do trabalho.
- Apêndice A: Apresenta o diagrama de conexões do modelo do reator saturado desenvolvido para o ATP e as listagens dos arquivos de entrada e saída do programa referentes à simulações com o modelo.

2. CONTROLE DE TENSÃO EM LINHAS DE TRANSMISSÃO

2.1 Introdução

Todo sistema elétrico à corrente alternada dispõe de duas formas de potência: a potência ativa e a reativa. Nos processos industriais somente a potência ativa produz trabalho, através de sua transformação em potência mecânica, térmica, luminosa etc. A potência reativa é aquela que, apesar de não produzir trabalho, é indispensável para produzir o fluxo magnético necessário ao funcionamento das máquinas, transformadores e a sua transmissão através das linhas de transmissão.

A cada uma destas potências corresponde uma corrente elétrica, ou seja, a corrente ativa, em fase com a tensão da rede, e a corrente reativa, atrasada de 90°, se for um circuito indutivo, ou adiantada, se for um circuito capacitivo. As duas correntes se compõem para formar a corrente aparente, defasada de um ângulo (p em relação à tensão. Embora denominada aparente, esta corrente circula pelos diversos condutores do circuito, provocando aquecimento e, consequentemente, perdas nos mesmos, além de produzir quedas de tensão indesejáveis.

Estas componentes podem ser visualizadas através do caso típico de alimentação de uma carga através de uma ligação consistindo de um elemento resistivo e outro indutivo, conforme mostra o circuito da Fig. 2. l,a seguir:

Carga

P+jQ=SZ < p

Fig. 2.1

Seja:

 $S = P + jQ = Jl >^{2} + Q^{2} Z$

P S

Onde:

R_L, X|,: Resistência e reatância da ligação;

Vf: Módulo da tensão de alimentação;

Vc: Módulo da tensão na carga;

P, Q: Potências ativa e reativa da carga;

S: Potência aparente da carga;

(p: Angulo entre a potência ativa e reativa da carga;

Cos cp: Fator de potência da carga.

Adotando a tensão da carga como referência, isto é:

 $Vc = Vc Z0^{\circ}$

tem-se:

Vc Vc Vc

A circulação da corrente I pela ligação provoca as seguintes perdas ativa (AP) e reativa (AQ):

Vc² (2.2) Vc

A tensão na alimentação para atender esta carga seria:

$$Vf = Vc + (R + jX) i = Vc + (R + jX) \wedge y e^{i\theta} \{Cos c \sim jSentp\}$$
(2.3)

$$Vf = Vc +$$
 $h\# + o^{2}$ $[RCosc + XSerup) + 7$ J $(XCostp - RSenc)$

As Figs. 5.4 a 5.7, no final do capítulo, apresentam as formas de onda das tensões no final da linha e das correntes nos reatores em função do nível da carga.

A partir dos resultados da tabela 5.3, construiu-se a Fig. 5.8, apresentada a seguir, com o perfil da tensão no final da linha em função do nível da carga.

Fig. 5.8 - Regulação de Tensão

Destes resultados pode-se comentar os seguintes pontos:

- A alternativa com o reator saturado em substituição ao reator convencional da linha propicia uma regulação de tensão mais eficiente que a alternativa tradicional. Além disso, como não envolve manobra de equipamentos permite um controle contínuo, isto é, sem descontinuidades.
- A alternativa do reator saturado com sistema de correção da inclinação produz uma regulação de tensão melhor, além de apresentar níveis de distorção total da tensão ligeiramente menores.
- No que se refere à distorção de tensão produzida pelos reatores saturados, verifica-se que para o sistema a plena carga a distorção é praticamente desprezível (0.62%), enquanto para cargas intermediárias o nível varia entre 2.0 a 2.5%. Para o sistema em vazio observou-se um nível máximo de 3.37% no caso do reator sem correção da inclinação, porém sem maiores implicações, pois não há cargas no sistema.

5.4.2 Influência de Desequilíbrios no Sistema na Operação do Reator Saturado

A influência de possíveis desequilíbrios e desbalanços de tensão existentes no sistema sobre o comportamento do reator saturado, principalmente no que diz respeito aos níveis de distorção harmônica produzidos na tensão de fim de linha, foi verificada através de simulações de regime permanente considerando a superposição de tensões de sequência negativa ou zero de 1 a 5 % na tensão de alimentação. Para esta verificação considerou-se o RS2 com correção da inclinação e um nível de 30% de carga no sistema. Os resultados estão apresentados na tabela 5.5, a seguir:

Vnegativa <%)	Vzero <%)	Corrente no Reator (Aeficaz)	Distorção Total Corrente (%Ieficaz)	Tensão Fim de Linha (pu)	Distorção Total Tensão (%Veficaz)
0	0	45.74	8.65	1.056	2.11
		A-43.62	9.46	1.059	2.60
1		B-42,10	10.45	1.046	2.83
		C - 40.90	10.83	1.048	2.79
	0	A-41.56	11.09	1.063	3.70
2		B-36.25	14.56	1.036	4.02
		C-38.68	13.34	1.039	3.97
		A-35.93	20.32	1.075	7.99
5		B - 29.86	27.63	1.006	8.87
		C-23.92	36.57	1.013	8.58
		A-42.16	9.83	1.052	2.27
	1	B-42.16	9.83	1.050	2.28
		C-42.15	9.84	1.051	2.28
0		A-38.62	11.36	1.047	2.38
	2	B-38.61	11.35	1.044	2.38
		C-38.61	11.37	1.045	2.38
		A-28.31	18.47	1.032	2.46
	5	B-28.30	18.47	1.026	2.48
		C-28.30	18.49	1.028	2.47

Tabela 5.5

Como ilustração, a Fig. 5.9, no final do capítulo, mostra as formas de onda da tensão no fim de linha em função do nível da componente de tensão de sequência negativa.

Conforme se observa componentes de sequência negativa têm influência maior na distorção harmônica de tensão do que componentes de sequência zero. No entanto, para níveis de sequência negativa de até 1% e de sequência zero de até 5%, a influência não é significativa.

5.5 Análise em Regime Transitório

Neste subitem são analisadas comparativamente as duas alternativas de compensação reativa sob o ponto de vista dos principais transitórios eletromagnéticos em sistemas de transmissão, ou seja: energização de linha de transmissão, rejeição de carga, energização de transformador e aplicação de defeito. Esta análise comparativa tem por principal objetivo verificar se a alternativa com o reator saturado não apresenta surpresas do ponto de vista de seu próprio comportamento, como também em relação a imposições aos equipamentos do sistema. Assim, não é efetuada uma análise completa destes transitórios, procurando-se simular apenas uma condição específica de cada um, sem envolver, por exemplo, simulações estatísticas.

No que se refere a alternativa com o reator saturado considerou-se aquela correspondente ao RS2 com o sistema de correção da inclinação.

5.5.1 Energização de Linha de Transmissão

A tabela 5.6, a seguir, apresenta os principais resultados obtidos referentes a energização de linha de transmissão, com e sem defeito, simuladas com as seguintes condições:

- Fechamento simultâneo dos disjuntores no instante da passagem da tensão da fase A pelo seu máximo.
- No caso de energização sob defeito, considerou-se a existência de um defeito monofásico no fim da linha, fase B, antes do instante da energização.
- Representação da linha no ATP através do modelo de parâmetros distribuídos.

		Altern	ativa com Convenciona	Reator al		Alternativa com RS2		
Condição	Fase	Vmax	Pára-	Raios	Vmax	Imax Pára-R		Raios
		Linha	Imax	Energia	Linha	Reator	Imax	Energia
		(pu)	(A)	(kJ)	(pu)	(A)	(A)	(kJ)
	Α	1.69	48.7	23.8	1.57	580.6	0.65	0.024
Sem	В	1.67	32.4	5.7	1.42	876.8	0.0	0.0
Defeito	С	1.75	83.6	13.7	1.56	871.0	0.53	0.021
	Α	1.80	198.7	67.0	1.47	552.0	0.0	0.0
Com	В					142.0		
Defeito	С	1.78	139.0	21.5	1.64	692.0	17.2	19

Tabela 5.6 - Resultados de Energização de Linha

A Fig. 5.10, no final do capítulo, apresenta, para a alternativa com reator convencional, algumas formas de onda resultantes para a condição de energização da linha sem defeito e as Figs. 5.11 e 5.12, para a alternativa com o reator saturado.

Dos resultados encontrados, pode-se concluir:

- Em linhas gerais pode-se dizer que as duas alternativas são semelhantes do ponto de vista de energização de linha, embora a alternativa com o RS2 apresente algumas ligeiras vantagens, como, por exemplo, menores níveis de sobretensão na linha e praticamente não solicita os pára-raios do final de linha. A curva crescente de energia, mostrada na Fig. 5.11, refere-se a uma pequena corrente de regime permanente da ordem de 0.7 mA, presente nas duas alternativas.
- Verifica-se que em ambas as alternativas há um bom amortecimento do transitório. Na alternativa com o RS2 pode-se observar da Fig. 5.12 que a componente contínua da corrente do reator praticamente se extingue ao fim de 200 ms de transitório.

5.5.2 Rejeição de Carga

Em termos de rejeição de carga foram consideradas as seguintes condições:

- Condição de carga no sistema antes da rejeição: Plena carga.
- Tipo de rejeição: Perda do transformador abaixador, com consequente perda total da carga. Na alternativa tradicional ocorre também a perda do banco de capacitores.
- No caso da alternativa com o RS2 simulou-se o regime permanente do reator por um período de 12 ciclos (200 ms) antes de ocorrer a rejeição.

Os resultados obtidos estão apresentados na tabela 5.7, a seguir, e nas Figs. 5.13 a 5.15, no final do capítulo.

		Altern	ativa com Convenciona	Reator al		Alternativ	ra com RS2 Pára-Raios Imax Energia (A) (kJ) 0.0 0.0			
Condição	Fase	Vmax	Pára-	Raios	Vmax	Imax	Imax Pára-R			
		Linha	Imax	Energia	Linha	Reator	Imax	Energia		
		(pu)	(A)	(KJ)	(pu)	(A)	(A)	(KJ)		
	Α	1.60	2.12	0.24	1.48	116.6	0.0	0.0		
Perda do	В	1.53	0.09	0.012	1.64	114.1	13.8	2.8		
Trafo	С	1.50	0.0	0.0	1.65	102.1	17.5	3.7		

Fabela 5.7 -	· Resultados	de	Rejeição	de Car	ga
--------------	--------------	----	----------	--------	----

Dos resultados encontrados, pode-se concluir:

- Os resultados não indicaram níveis severos de sobretensões transitórias e requisitos aos pára-raios, sendo o fenômeno bem amortecido.
- Da mesma forma que na energização de linha, as duas alternativas são semelhantes do ponto de vista de rejeição total de carga. No entanto, a alternativa com o RS2 apresenta níveis de sobretensões transitórias e requisitos aos pára-raios ligeiramente mais elevados que na alternativa com o reator convencional.

5.5.3 Energização de Transformador

Foi analisada a energização transitória de um transformador abaixador com as seguintes condições:

- Condição de carga no sistema: Em vazio.
- Fechamento simultâneo das três fases em um instante correspondente à passagem da tensão da fase A por zero.
- Não se considerou a presença de fluxos residuais no transformador.
- No caso da alternativa com o RS2 simulou-se o regime permanente do reator por um período de 15 ciclos (250 ms) antes de ocorrer a energização.

Os resultados obtidos estão apresentados na tabela 5.8, a seguir. As Figs. 5.15 a 5.18, no Final do capítulo, apresentam as formas de onda referentes as tensões e correntes da fase B, cujos resultados forma mais severos.

	Alternat	tiva com Re	ator Conv	vencional	Alternativa com RS2				
Fase	Vmax	Corrente	ente Pára-Raios		Vmax	Corrente	Corrente	Pára-Raios	
	Linha	Inrush	Imax	Energia	Linha	Reator	Inrush	Imax	Energia
	(pu)	(A)	(A)	(kJ)	(pu)	(A)	(A)	(A)	(kJ)
Α	1.40	408.7	0.0	0.0	1.39	177.2	421.8	0.0	0.0
В	1.70	227.2	53.7	14.8	1.52	174.0	270.9	0.08	0.02
С	1.57	314.5	0.67	0.08	1.52	142.7	321.1	0.08	0.02

Tabela 5.8 - Resultados de Energização de Transformador

Dos resultados encontrados, pode-se concluir:

- Os resultados não indicaram níveis severos de sobretensões e requisitos aos pára-raios. O amortecimento do fenômeno é mais lento que os demais, como é típico de energização de transformadores, sendo que após 400 ms ainda há uma expressiva componente contínua na corrente inrush.
- Da mesma forma que nos transitórios anteriores, as duas alternativas são semelhantes do ponto de vista de rejeição total de carga. No entanto, na alternativa com o RS2 nota-se níveis de sobretensões e requisitos aos pára-raios ligeiramente mais baixos que na alternativa com o reator convencional.

5.5.4 Aplicação de Defeito

Em termos de aplicação de defeito foram consideradas as seguintes condições:

- Condição de carga no sistema antes da rejeição: Plena carga.
- Tipo de defeito: Ocorrência de um defeito fase-terra (Fase A), no final da linha de transmissão, num instante correspondente à passagem da tensão pelo seu máximo.

- No caso da alternativa com o RS2 simulou-se o regime permanente do reator por um período de 12 ciclos (200 ms) antes de ocorrer o defeito.

Os resultados obtidos mostraram que este fenômeno praticamente não produziu sobretensões no sistema nem atuação dos pára-raios, conforme mostra a tabela 5.9, a seguir, e a Fig. 5.19 no final do capítulo.

		Alternativa com Reator Convencional	Alternativ	a com RS2			
Condição Fa		Vmax Linha (pu)	Vmax Linha (pu)1 max Reator (A)0.072.2				
	Α	0.0	0.0	73.3			
Perda do	В	1.05	_	98.2			
Trafo	С	1.15	1.15	124.3			

Tabela 5.9 - Resultados de Aplicação de Defeito

Dos resultados encontrados, pode-se concluir que similarmente aos transitórios anteriores, as duas alternativas são semelhantes do ponto de vista de aplicação de defeito. E interessante observar que o reator saturado continua operar mesmo com tensão nula em uma das fases, embora produza uma distorção harmônica na tensão razoavelmente elevada.

5.6 Conclusões

Das análises comparativas efetuadas pode-se obter as seguintes conclusões:

- Em termos de desempenho em regime permanente, a alternativa com o reator saturado em substituição ao reator convencional da linha propicia uma regulação de tensão mais eficiente que a alternativa tradicional. Além disso, como não envolve manobra de equipamento, permite um controle contínuo, isto é, sem descontinuidades. No que se refere à distorção de tensão produzida pelos reatores saturados, verifica-se que para o sistema a plena carga a distorção é praticamente desprezível (0.62%), enquanto para cargas intermediárias o nível varia entre 2.0 a 2.5%. Para o sistema em vazio observou-se um nível máximo de 3.37% no caso do reator sem correção da inclinação, porém sem maiores implicações, pois não há cargas no sistema. Cumpre salientar que pode-se compensar ainda mais as harmônicas geradas pelo reator saturado através da agregação de um reator saturado auxiliar conectado no secundário do reator principal, ou através da utilização de um reator do tipo "Treble-Triplef\
- Em termos de regime transitório, ambas as alternativas resultaram semelhantes, não se observando a ocorrência de níveis severos de sobretensões transitórias no sistema ou de requisitos impostos aos pára-raios no ílnal da linha. No entanto, a alternativa com os reatores saturados apresentou níveis de sobretensão ligeiramente menores na maioria dos transitórios estudados. Não se observou nenhuma surpresa quanto ao comportamento dos reatores saturados durante os fenômenos transitórios estudados, tendo-se observado um amortecimento razoável da componente contínua das correntes do reator, presente em alguns transitórios, mesmo na condição de falta monofásica na barra do reator.

A utilização de reatores saturados em substituição aos reatores convencionais de linha em sistemas de transmissão radiais é uma alternativa bastante atrativa do ponto de vista técnico e deve apresentar vantagens do ponto de vista econômico, já que pode praticamente eliminar a necessidade de compensação reativa das cargas, ou seja, a instalação de bancos de capacitores junto às cargas.

FIGURAS

•

Hg. 5.4- Corrente na Fase A do Reator em Função do Nível de Carga do Sistema Sistema 230 kV com RS2 sem Correção da Inclinação

Fig. 5.5- Tensão Fase A no Fim de Unha em Função do Nível de Carga do Sistema Sistema 230 kV com RS2 sem Correção da Inclinação

Considerando esta última expressão, os diagramas fasoriais da Fig. 2.2, a seguir, apresentam 3 situações típicas que podem resultar para esta tensão de alimentação, dependendo do fator de potência da carga:

- Carga resistiva (q > = 0)

- Carga Indutiva (φ<0)

- Carga Capacitiva (φ>0)

Fig. 2.2

Dos referidos diagramas e das equações anteriores pode-se destacar as seguintes constatações:

- Influência do fator de potência da carga: Verifica-se que quanto maior for o ângulo (p (maior potência reativa Q da carga) tem-se:

Maiores perdas ativa e reativa na ligação (AP e AQ)

Fig. 5.6- Corrente Fase A do Reator cm Função do Nível de Carga do Sistema Sistema 230 kV com RS2 com Correção da Inclinação

Fig. 5.7- Tensão Fase A no Fim de Linha em Função do Nível de Carga do Sistema Sistema 230 kV com RS2 com Correção da Inclinação

Fig. 5.9- Tensão Fase B no Fim de Linha em Função do Nível de Tensão de Seq. Negativa Sistema 230 kV com RS2 com Correção da Inclinação

28-Feb-96 1544.12

2040- (10) PRAI-A-TERRA	60 80 (11) P R A I - B - T E R	r a ¹⁰⁰	140 (12?PRAI-C- TERRA	160	180	t(ms)
CORRENTE NO	PARA-RAIOS					

 50
 100
 150
 200
 250

 (7) LINF-A - PRAIA
 (8) LINF-B - PRAI-B
 (9) LINF-C - PRAI-C
 t[ms]

 ENERGIA NO PARA-RAIOS
 100
 100
 100
 t[ms]

Fig. 5.10- Lnergização de Linha Sem Defeito Sistema 230 kV com Reator Convencional

Fig. 5.12- Energização de Linha Sem Defeito Sistema 230 kV com RS2 e com Correção da Inclinação

28-Feb-96 1603.56

Fig. 5.14- Rejeição Total de Carga (Perda do Trafo Abaixador) Sistema 230 kV com RS2 e com Correção da Inclinação

Fig. 5.15- Rejeição Total de Carga (Perda do Trafo Aoaixador) Sistema 230 kV com RS2 c com Correção da Inclinação

(14) PRAI-B-TERRA t[ms] CORRENTE NO PARA-RAIOS - FASE B

- . Quando a carga for indutiva (cp<0), maiores quedas de tensão reativa na ligação, sendo necessário, portanto, estabelecer uma tensão de fonte elevada para compensar esta queda e manter a tensão na carga dentro de níveis aceitáveis. Isto geralmente requer esforços adicionais ao sistema de transmissão.
- . Quando a carga for capacitiva ((p>0), a situação é oposta, ou seja, pode ocorrer uma queda de tensão reativa negativa na ligação, resultando em tensão de fonte menor que a tensão na carga. Isto, em princípio, é uma vantagem para o sistema. No entanto, por ocasião de perdas totais ou parciais de carga ativa P (rejeição de carga), poderá ocorrer sobretensões perigosas para as cargas remanescentes.

De forma a evitar os inconvenientes relacionados anteriormente procura-se geralmente manter o fator de potência da carga próximo a 1.0, ou seja, apenas carga ativa P. Como a maioria das cargas compõem-se de parcelas resistiva e indutiva, geralmente é feita a correção do fator de potência (compensação reativa da carga) através da instalação de capacitores em paralelo.

- Influência da impedância da ligação: Quanto mais baixa for a impedância da ligação menores serão as perdas e as quedas de tensão na mesma, resultando em melhores condições de transmissão de potência e menores requisitos de compensação reativa.

CORRENTE INRUSH NO TRANSFORMADOR - FASE B

28-Feb-96 15 02.24

- r '

Fig. 5.17- Fnergização de Transformador Sistema 230 kV com RS2 c com Correção da Inclinação

Fig 5.18- Energização de Transformador Sistema 230 kV com RS2 c com Correção da InclinaçS

Sistema 230 kV com RS2 e com Correção da Inclinação

Fig. 5.19- Aplicação de Defeito

6. CONCLUSÕES GERAIS E PROSSEGUIMENTO DO TRABALHO

6.1 Conclusões Gerais

Como resultado dos estudos desenvolvidos para a realização deste trabalho foi possível extrair as seguintes principais conclusões:

- Embora o desenvolvimento da tecnologia dos reatores saturados não tenha sido recente, a sua aplicação como meio de compensação reativa em sistemas de transmissão a extra alta tensão é interessante. A alternativa investigada de substituição de um reator convencional de uma linha de transmissão em 230 kV por um reator saturado é uma solução original e tecnicamente atrativa, apresentando as seguintes vantagens:
 - . Devido a sua característica não linear o ponto de operação do reator saturado se ajusta automaticamente em função das necessidades do sistema, desde a condição sem saturação (sem absorção de reativos) até a condição de extrema saturação (máxima absorção de reativos). Assim a sua aplicação pode dispensar o emprego de bancos de capacitores juntos às cargas, com consequente economia para o sistema.
 - . Oferece uma regulação de tensão em regime permanente mais eficiente que a alternativa empregando reatores convencionais e bancos de capacitores. Além disto, permite um controle contínuo da tensão de operação em função das variações normais do nível de carga do sistema, sem causar as descontinuidades comuns no esquema de compensação convencional, devido a manobra de bancos de capacitores.
 - . Nos transitórios de manobra analisados, a alternativa com os reatores saturados não apresentou nenhum problema quanto ao comportamento do reator saturado, tendo-se observado inclusive níveis de sobretensão ligeiramente inferiores do que na alternativa com o reator convencional.
 - . No que se refere à distorção harmônica introduzida no sistema devido à operação do reator saturado, verificou-se que os níveis não são proibitivos, mesmo sem a presença de qualquer filtro de harmônico. No entanto, julga-se importante aprimorar as técnicas de compensação harmônica no reator, quer seja pela conexão de reatores saturados auxiliares nos secundários do reator principal, quer seja pelo emprego de um reator com um maior número de núcleos (reator "Treble-Triplef com 9 núcleos, por exemplo), ou quer seja por ambas medidas.
- A modelagem de reatores saturados no programa EMTP-ATP é perfeitamente possível com os recursos normais disponíveis no programa, constituindo-se em um recurso de simulação poderoso, de fácil utilização e de disponibilidade pública.
- Com esta modelagem proposta julga-se possível, do ponto de vista de estudos de engenharia, a simulação e análise dos principais fenômenos envolvendo a aplicação de reatores saturados em sistemas de potência, tanto no âmbito do regime permanente como do transitório eletromagnético.
6.2 Prosseguimento do Trabalho

Embora os principais objetivos do trabalho tenham sido atingidos com a disponibilização da modelagem do reator saturado no ATP, bem como com os resultados obtidos da aplicação prática, julga-se que para um maior aprofundamento desta tecnologia algumas atividades de pesquisa e desenvolvimento devam ser continuadas, tomando este trabalho como ponto de partida. Dentre estas atividades complementares, sugere-se as seguintes:

- Do ponto de vista de implementações na modelagem do reator:
 - . Desenvolvimento da modelagem do reator saturado do tipo "Treble-Tripler" com 9 núcleos.
 - . Implementação de reatores saturados auxiliares conectados no secundário do reator principal, como forma de otimizar a compensação das correntes harmônicas, tanto para o reator "Twin-Tripler", como para o "Treble-Tripler".
 - . Representação das perdas nos núcleos dos reatores principais.
- Do ponto de vista do equipamento em si, sugere-se contatos com fabricantes com os seguintes objetivos:
 - . Viabilidade técnica e econômica de projetar reatores saturados para serem conectados diretamente no nível de extra alta tensão, isto é, em barras com tensões de 230 kV ou acima desta, bem como o desenvolvimento de reatores saturados baseados em núcleos monofásicos.
 - . Avaliação das características técnicas de reatores saturados destes tipos, tais como, dimensões, peso do equipamento, nível de perda etc.

7. REFERÊNCIAS BIBLIOGRÁFICAS

- [01] Ainsworth, J.D.; Friedlander, E.; Ralls, K.J. "Recent Developments Towards Long Distance AC Transmission Using Saturated Reactors", International Conference on High Voltage DC and/or AC Power Transmission, London, November, 1973.
- [02] Ainsworth, J.D.; Friedlander, E.; Yacamini, R. "Application of Saturated Reactors to AC Voltage Stabilization for HVDC Transmission and Other Large Convertors", IEEE PES Summer Meeting and EHV/UHV Conference, Vancouver, July, 1973.
- [03] Ainsworth, J.D.; Gavrilovic, A.; Thanawala, H.L. "Overvoltage Control By Different Types of Reactive Power Compensators in AC-DC Systems", IEEE Conference on Overvoltages and Compensation on Integrated AC-DC Systems, Winnipeg, July, 1980.
- [04] Barbier, C; Barret, J.P. "An Analysis of Phenomenon of Voltage Collapse on Transmission System", Revue Générale de L'Électricité, Numéro Spécial CIGRE, Juillet, 1980.
- [05] Brasil, D.O.; Carvalho, M.A. "Saturated Reactors Applied in Transmission Systems", IPST'95 -International Conference on Power Systems Transients, Lisboa, September, 1995.
- [06] Brewer, G.L; Welch, I.M.; Horwill, C; Thanawala, H.L.; Young, D.J. "The Application of Static VAR Compensators to the English Terminal of the 2000 MW HVDC Corss Chanel Link", 27th CIGRE Session, Paper 14-07, Paris, 1986.
- [07] Carvalho, M.A. "Steady State Representation of Reactive Compensators in HVDC Stations", Ph.D. Thesis, University of Manchester Institute of Science e Technology, September, 1983.
- [08] Carvalho, M. A.; Brasil, D.O.C. "Aplicação de Reatores Saturados em Sistemas de Transmissão", XIII Seminário Nacional de Produção e Transmissão de Energia Elétrica (SNPTEE), Grupo IV, Camboriú, Outubro, 1995.
- [09] Dale, S.H.; Dunhan, CR.; Friedlander, E. "Square Wave Transformer and Their Use in Static Control of Mercury Arc Rectifiers", GEG Journal, pp. 229-238, England, October, 1952.
- [10] Frank, H. "Thyristor Controlled Static VAR Compensators for Transmission Systems", Ciclo de Palestras da ASEA, em seqüência ao IX SNPTEE, Belo Horizonte, Outubro, 1987.
- [11] Fisher, F.J.; Friedlander, E. "DC Controlled 100 MVA Reactor", GEC Journal, pp. 93-104, England, April 1955.
- [12] Friedlander, E. "Principle and Analysis of a Stabilized Phase Multiplier Type of Magnetic Frequency Convenor", Electrical Energy, Vol. I, pp. 55-66, October 1956.
- [13] Friedlander, E. "Static Network Stabilization Recent Progress in Reactive Power Control", GEC Journal, Vol. 3, No. 2, pp. 58-65, England, 1966.
- [14] George, Y.; Labart, A.; Sironi, G.; Van Hülse, J. "Analytical and Numerical Modelling of Saturated Reactors", ACEC Review, No. 1-2, pp. 27-44, 1978.
- [15] I ledman, D.E. "Teoria das Linhas de Transmissão Curso de Engenharia em Sistemas Elétricos de Potência / Série PTI", Edições UFSM, Santa Maria, RS, 1983.

- [16] Humpage, W.D.; Nguyen, T.T. "Saturated Reactor Compensator Model Electromagnetic Transient Formulation for Main and Auxiliary Core Winding Systems", IEE Proceedings, Vol. 134, No. 3, May, 1987.
- [17] Lindberg, P. "Series Capacitor Applications", Ciclo de Palestras da AESA, em seqüência ao IX SNPTEE, Belo Horizonte, Outubro, 1987.
- [18] Lowe, S.K. "Static VAR Compensators and Their Applications in Australia", Power Engineering Journal, pp. 247-256, September, 1989.
- [19] MuIIer-Livro
- [20] Ross, R.P.D. "Controle das Sobretensões Temporárias Através do Uso de Limitadores em Sistemas EATCA", XII SNPTEE, Recife, 1993.
- [21] Steward, J.R.; Humpage, W.D.; Choi, S.S.; Garrood, A.J.; Nguyen, T.T. "Measurements on Long Distance Transmission Interconnection with Saturated Reactor Compensator", IEE Proceidngs, Vol. 134, No. 6, November, 1987.
- [22] Thanawala, H.L.; Ainsworth, J.D.; Willians, W.P. "Operating Characteristics of Static Compensators Using Saturated and Thyristor Controlled Reactors", GEC Journal, Vol. 47, No. 3, England, 1981.
- [23] Stevenson, W.D. Elements of Power Systems Analysis", McGraw Hill Book Company, 4th Edition, USA.
- [24] Thanawala, H.J.; Kelham, W.O.; Crawshaw, A.M. "Static Compensators Using Thyristor Control With Saturated Reactors and With Low Reactance Linear Reactors", IEE Conference on Thyristor and Variable Static Equipment for AC and DC Transmission, London, 1981.
- [25] Thanawala, H.L.; Young, D.J. "Saturated Reactors Some Recent Applications in Power Systems", GEC Power Transmission Division, Publication 1490-5, Reprinted from Energy International, Vol. 7, Number 11, November, 1970.
- [26] Thanawala, H.L.; Willians, W.P.; Young, D.J. "Static Reactive Compensators for AC Power Transmission", GEG Power Transmission Division, Publication No. 1491-10, Reprinted from GEC Journal, Vol. 45, No. 3, England, 1979.
- [27] Washington, L.A.N.; Dominei, H.W. "Transformer Core Modelling*', IPST'95 International Conference on Power Systems Transients, Lisboa, September, 1995.
- [28 J Manilla do Programa ATP

APÊNDICE A

MODELAGEM DE UM REATOR SATURADO BÁSICO NO ATP

ÍNDICE

	Conteúdo	Pág.
1	CARACTERÍSTICA DO REATOR SATURADO MODELADO	123
2	DIAGRAMA DE CONEXÕES DOS NÚCLEOS E NOME DAS BARRAS	124
3	ARQUIVOS DO ATP	126
3.1	Característica ⊲jxl do Núcleo	126
3.2	Arquivo de Entrada do ATP para Simulação do RS	126
3.3	Listagem do Arquivo de Saída do ATP Referente à Simulação do RS em Regime Permanente	127
3.4	Curvas Obtidas com o PCPLOT	127
	ANEXO 1 - LISTAGEM DO ARQUIVO DE ENTRADA DA SUB. "SATURATION"	132
	ANEXO 2 - LISTAGEM DO ARQUIVO DE ENTRADA DO ATP	134
	ANEXO 3 - LISTAGEM DO ARQUIVO DE SAÍDA DO ATP	138

I. CARACTERÍSTICAS DO REATOR SATURADO MODELADO

O RS, cuja modelagem está apresentada neste Apêndice, tem as seguintes características básicas:

- Tensão Nominal: 230 kV
- Potência Nominal: 18 MVA, ou seja, 3 MVA por núcleo
- Núcleo:
 - . Joelho: 1.0 pu
 - .Xm:100000%
 - .Xac: 15%
- Enrolamentos Primários: Xd = 15%, $V_{2} = 48.62 \text{ kV}$, $V_{2} = 17.78 \text{ kV}$
- Enrolamentos Secundários: Xd = 40%, $V_s = 14.58$ kV

O RS é alimentado por uma fonte de tensão ideal, conforme esquema da Fig. A. 1, a seguir:

R = 0.0m

Fig. A.1

2.2 Controle de Tensão em Linhas de Transmissão Longas

Quando se trata de linhas de transmissão radias longas a questão do controle de tensão é fundamental para a própria operação do sistema. Neste item veremos aspectos básicos do controle de tensão e compensação reativa em regime permanente envolvendo este tipo de linha de transmissão.

2.2.1 Equações e Parâmetros Típicos de Linhas de Transmissão

Seja dada linha aérea de transmissão, definida por seu comprimento e por seus parâmetros distribuídos R, L e C:

Um comprimento infinitesimal dx da linha pode ser representado pelo circuito apresentado na Fig. 2.3, a seguir:

i (x,t) Rdx Ldx i (x + dx.t) i (x + dx.t) v V W \setminus — H M W ^ v (x,t) G dx C dx v (x + dx,t)

Fig. 2.3

Onde:

L: indutância distribuída (H/m)

C: capacitância distribuída (F/m)

R: resistência distribuída (Q/m)

G: condutância distribuída $(H^{"^1}/m)$

2. DIAGRAMA DE CONEXÕES DOS NÚCLEOS E NOME DAS BARRAS

O diagrama geral de conexão dos enrolamentos, com os nomes das principais barras representadas está apresentado da Fig. A.2, a seguir:

Fig. A.2

O detalhamento da representação de cada núcleo está apresentado na Fig. A.3, a seguir:

Outras ligações não mostradas nestas figuras e que foram incluídas na modelagem são as seguintes:

- Resistências de valores bastante elevados (IO° Q) ligadas entre as barras dos enrolamentos secundários ligados em delta e a terra, bem como entre a barra "NEUTRO" do RS e a terra, de forma a prover uma referência e estes elementos, evitando assim subsistemas desconectados da referência, o que ocasiona erro no ATP. Alternativamente para fornecer esta referência, foi também testada uma capacitància de valor muito pequeno (3 x 10" F) ao invés da resistência, tendo-se optado por esta última devido a ocorrência de algumas oscilações provocadas por estas capacitâncias e as indutâncias do circuito.
- Resistências de valores bastante elevados (IO° Q) conectadas entre os terminais dos enrolamentos primários com o objetivo de obter saída da tensão nestes enrolamentos.

3. ARQUIVOS DO ATP

3.1 Característica 🔅 x I do Núcleo

O Anexo 1 mostra os arquivos de entrada e saída do ATP referentes à utilização da subrotina Saturation para transformar a característica V x I (eficaz) do núcleo, apresentada na Fig. 4.3 do item 4, na característica \Rightarrow x I (valores de pico), necessária para a modelagem do RS.

Observa-se do arquivo de saída os seguintes pontos da curva 🔿 x I:

I(A)	• (V.s)
0.0	0.0
0.0087261	182.389
147.83009	209.720

Através destes pontos pode-se calcular a indutâncias de magnetização (Lm) e saturada (Lac):

Lm = 20901.5 H

Lac = 0.1849 H

3.2 Arquivo de Entrada do ATP para Simulação do RS

No Anexo 2 encontra-se o referido arquivo. O mesmo está dividido nos seguintes principais segmentos, indicados no próprio arquivo:

- Cartões miscellaneous: Para fornecer os dados gerais da simulação.
- TACS: Lógica para obtenção das fmms nos diversos núcleos e do fluxo no núcleo 1.
- Impedância de fonte: Representação da impedância da fonte alimentadora.
- Núcleos: Representação dos núcleos e enrolamentos do RS.
- Resistores amortecedores: Representação dos resistores amortecedores em paralelo com a característica () x I do núcleo.
- Referências: Resistências para dar referência aos enrolamentos em delta e ao neutro do RS.
- Pedido de tensões dos enrolamentos.
- Chaves: Chaves para medir corrente do reator c para abrir ou fechar os enrolamentos secundários.
- Fontes: Fornecer dados das fontes de alimentação.
- Tensão nos nós: Solicitação da tensão na barra do RS.
- Fourier: Especificação dos dados para decomposição da corrente do RS em série de Fourier.

3.3 Listagem do Arquivo de Saída do ATP Referente à Simulação do RS em Regime Permanente

- O Anexo 3 contém a listagem do arquivo de saída do ATP, com o seguinte conteúdo básico:
- A listagem dos dados de entrada, bem como sua interpretação no ATP.
- A tabela de conectividade da rede.
- A impressão do regime permanente da rede, considerando regime fasorial e sem não Iinearidades, inclusive sem saturação dos núcleos.
- Impressão dos resultados da simulação no tempo, que no presente caso representa o regime permanente do reator com saturação. Esta impressão foi obtida para apenas alguns pontos, isto é, de 500 em 500 passos de integração. As formas de onda da resposta no tempo são visualizadas melhor através das curvas obtidas no PCPLOT.
- Decomposição em série de Fourier da corrente na fase A do reator, no intervalo de tempo de 13.4 a 30.0 ms (1 ciclo da frequência fundamental), apresentado as seguintes informações:
 - . Valor eficaz da corrente: 76.8 A.
 - . Distorção harmônica total (THD): 3.79 %.
 - . Amplitudes individuais das harmônicas: Como esperado, observa-se que as principais harmônicas são as características, ou seja, 1 I° (3.20 %), 13° (1.77 %), 23° (0.71 %) e 25° (0.46 %).

3.4 Curvas Obtidas com o PCPLOT

Através do manuseio do arquivo de saída "PL4" pelo PCPLOT, pode-se obter as formas de onda de todas as variáveis solicitadas no arquivo de entrada do ATP.

A tela básica do PCPLOT apresentando o conteúdo do arquivo de saída, isto é, as curvas possíveis de serem obtidas, é mostrada na Fig. A.4.

Algumas curvas mais importantes obtidas da simulação estão apresentadas nas seguintes figuras:

- Fig. A.5
 - . Corrente na fase A do reator.
 - . Corrente no delta fechado do secundário dos núcleos 1 a 3.
 - . Fmm do núcleo 1.
- Fig. A.6
 - . Fluxo no enrolamento 1 do núcleo 1
 - . Tensão no enrolamento 1 do núcleo
 - . Tensão no enrolamento 2 do núcleo

*** FILE CONTENTS *** file: RSB1.PL4

voltage, power	current, energy, f-resp.	J others (TACS, U.M.,)
 (1) NU1EN1 - NU2EN2 (2) NU2EN1 - NU3EN2 (3) NU3EN1 - NU1EN2 (4) NU4EN1 - NU1EN2 (5) NU6EN1 - NU2EN2 (6) NU5EN1 - NU3EN2 (7) NU4EN1 - NU5EN2 (8) NEUTRO-• NU4EN2 (9) NU5EN1 - NU6EN2 (10) NEUTRO - NU5EN2 (11) NU6EN1 • NU4EN2 (12) NEUTRO - NU6EN2 (13) REAT-A (14) REAT-B (15) REAT-C 	(16) REATO 1 -NU3EN3 (17) REAT02 - NU6EN3 (18) FONT-A-REAT-A (19) FONT-B - REAT-B (20) FONT-C - REAT-C	 (21) TACS - FM MTR 1 (22) TACS - FMMTR2 (23) TACS - FMMTR3 (24) TACS - FMMTR4 (25) TACS - FMMTR5 (26) TACS - FMMTR6 (27) TACS - FL1EN1

Fl : Help	F2 : Window	F3 : New Case	[CR]: Select
F4 : Smoothing	F5 : Review	F6 : Factor & Offs	F10 : Quit
÷ _			-

-1

Fig. A.4

Fig. A.6

ANEXOS

1. LISTAGEM DO ARQUIVO DE ENTRADA DA SUBROTINA "SATURATION"

```
BEGIN NEW DATA CASE
SERASE
SATURATION
             C_____+_
С
C REATOR BÁSICO 1
C OBTENÇÃO CURVA FixI
C CARACTERÍSTICAS DO REATOR
C VN = 230 \text{ KV} \text{ SN} = 18 \text{ MVA}
C XM=100.000% XAC= 15.0% JOELHO=1.0 PU
C REPRESENTAÇÃO DA CURVA POR 2 PONTOS NO ENROLAMENTO 1
C VN1 = 48.62KV SNI = 3.0 MVA (POR NÚCLEO)
fj—
   -----+-----+-----+-----+------+
                                         _+_
С
C CARTÃO ESPECIFICAÇÃO DA BASE
С
C --FREQ(--VBASE(--SBASE(-1 PUNCH(-KTHIRD
С
   60. 48.62 3.0
C_
   С
C ENTRADA PONTOS I(RMS) , V(RMS)
С
C_
    _____1(_____v
С
    0.00100 1.000
1.0000 1.14985
        9999
$PUNCH
BLANK
BEGIN NEW DATA CASE
BLANK
```

2. LISTAGEM DO ARQUIVO DE SAÍDA DA SUBROTINA "SATURATION"

Descriptive interpretation of input data cards. ! Input data card images are shown below, all 80 columns, character by character 0 1 2 3 4 5 6 7 8 012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 Comment card. C data:SATRSB1.DAD Marker card preceding new EMTP data case. BEGIN NEW DATA CASE JERASE Erase all of 0 cards in the punch buffer. Request for magnetic satu ation computation. SATURATION Comment card. C - . . . * Comment card. C Comment card. С Comment card. С N'CAO CURVA Fix I Comment card. C CARACTERÍSTICAS DO REATOR Comment card. C VN = 230 KV SN = 18 MVAComment card. XM=100.000% XAC= 15.0X JOELHO=1.0 PU C Comment card. C Comment card. VN1 = 48.62KV SN1 = 3.0 MVA (POR NÚCLEO) C Comment card. C Comment card. C Comment card. C CARTÃO ESPECIFICAÇÃO DA BASE Comment card. C Comment card. C ·FREQ(··VBASE(··SBASE(·1PUNCH(· Comment card. C Misc. const. 6.000E+01 48.62 862E+01 3.000E+00 60. 3.0 Comment card. C Comment card. !C Comment card. C ENTRADA PONTOS I(RMS) , V(RMS) Comment card. C Comment card. Comment card. C (I, V) point. 1.00000E+00 1.00100 -03 1.000 (I, V) point. •00 1.14985E+00 1.14985 Special termination-of-points card. Derived saturation curve gives peak current as a function of flux :

Row	Current [ampj	Flux [volt-sec]
1	0.000000000	0.000000000
2	0.0872612235	182.3890803815
3	147.8308502212	209.7200840767

Next, check the derived curve by independent reverse computation. Assuming sinusoidal voltage (flux) at the level of each point, rms current is found numerically. This curve should be equal to the original 1-V points inputted.

 Row
 Current in P.U.
 Voltage in P.U.

 2
 0.00100000
 3

Desprezando-se a condutância de fuga (fazendo-se G=0) e escrevendo-se as equações de corrente e tensão para este circuito, pode-se chegar às seguintes equações diferenciais [15]:

$$\frac{\partial v(x,t)}{\partial x} = R \frac{\dot{i}_{t}(x,t)}{\dot{i}_{t}(x,t)} + L \frac{\partial i_{t}(x,t)}{\partial t}$$

$$\frac{\partial i_{t}(x,t)}{\partial t} = R \frac{\dot{i}_{t}(x,t)}{\dot{i}_{t}(x,t)} + L \frac{\partial i_{t}(x,t)}{\partial t}$$

$$(2.4)$$

$$\frac{\partial i_{t}(x,t)}{\partial t} = R \frac{\langle 2\nabla (|JC|, t) \rangle}{\dot{i}_{t}(x,t)}$$

Estas equações mostram que a taxa diferencial da variação de tensão ao longo da linha resulta de uma queda resistiva e indutiva de tensão e que a variação diferencial da corrente ao longo da linha resulta da corrente de carga capacitiva.

Derivando novamente a equação (2.4) em relação a x e resolvendo-a simultaneamente chega-se nas seguintes equações, geralmente denominadas de equações das linhas de transmissão:

Trabalhando em regime permanente para a frequência nominal, podemos definir as tensões e correntes como fasores. Assim:

 $v = V = V e^{i'''} = V mag Z0, e''''$

 $i = j = Ie''^{*'} = ImagZO_2$?<''''

onde Vmag e Imag são funções de x.

As equações de tensão e corrente tornam-se portanto:

$$\frac{d^{2}V}{dx'} = jcoRCV - (o^{*}LCV = r^{2}v)$$

 $-7 = fwRCI-m^2LCV = Y \quad l$ $dx \qquad (2.6)$

LISTAGEM DO ARQUIVO DE ENTRADA DO ATP"

```
BEGIN NEW DATA CASE
$CLOSE, UNIT=4 STATUS=DELETE
SOPEN, UNIT=4 FILE=RSB1.PL4 FORM=FORMATTED
С
C_
        _+_
                 __+_
                                   +--•
C TESE MESTRADO UFPE
С
  DALTON 0. C. BRASIL
  MODELAGEM REATOR SATURADO TWIN-TRIPLER
С
С
   SIMULAÇÃO DO REGIME PERMANENTE COM FONTE DE TENSÃO IDEAL (PCC INFINITA;
С
   CARACTERÍSTICA DO REATOR BÁSICO 1
  VN=230 KV SN=18 MVA
С
С
  SATURAÇÃO:2 PTOS/JOELHO=1.0 PU/XAC=15%/XM=100000% BASE 48.62 KV 3 MVA
С
  ENROLAMENTOS PRIMÁRIOS: V1=48.62 KV V2=17.78 KV XD=5% BASE 3MVA
  ENROLAMENTOS SECUNDÁRIOS: VS=14.58 KV XD 30% BASE 3 MVA
С
   CONDIÇÃO DOS ENROALMENTOS SECUNDÁRIOS: ABERTOS
С
С
   CONDIÇÃO NORMAL - REGIME PERMANENTE
С
   FONTE INFINITA VF=1.15 PU
С
С
С
                     *** SEGMENTO: CARTÕES MISCELLANEOUS ***
                                 ____+___+ -
С
C DELTAT(---TMAX(---XOPT --COPT(-EPSLIN(-TOLMAT
  10.E-6 30.E-3 60. 0.
  --IOUT(--IPLOT(-IDOUBL KSSOUT(-MAXOUT(---IPUN(-MEMSAV(- -ICAT --ENERGÍ-IPRSUP
          1 1 1 1 0 0 2
    100
C --•
TACS HYBRID
С
С
                            *** SEGMENTO: TACS ***
                                                        _____
                                              + -
С
                         —___ <del>_</del>
С
С
  BLOCOS DE FUNÇÕES
С
                                                 2 917
 AUXI1A +REAT-A
 AUXI1B +REAT-B
                                                2 917
 AUXIIC +REAT-C
                                                2 917
 AUXI2A +REAT-A
                                                 1 067
 AUXI2B +REAT-B
                                                1 067
                                                1 067
 AUXI2C +REAT-C
 AUXI31 +REATO1
                                                0 875
 AUXI32 +REATO2
                                                0 875
 FMMTR1 +AUXI1A -AUXI2C +AUXI31
                                                1 000
 FMMTR2 +AUXI1B -AUXI2A +AUXI31
                                                1 000
 FMMTR3 +AUXI1C -AUXI2B +AUXI31
                                                1 000
 FMMTR4 +AUXI1C -AUXI2A +AUXI32
                                                1 000
                                                1 000
 FMMIR5 +AUXI1B -AUXI2C +AUXI32
 FMMTR6 +AUXIIA -AUXI2B +AUXI32
                                                1 000
 1FL1 EN1 +NU1EN1 -NU2EN2
                                                1 000
    ín
    1.u
            1.0
```

```
C
C
   BLOCOS DE FOVTES
C
91REAT-A
91REAT-B
91REAT-C
91REAT01
91REAT02
C
    VARIÁVEIS PARA IMPRESSÃO
C
C
33FMMTRIFMMTR2rWR3FMMTR4FMMTR5F^
C
   CONDIÇÕES INICIAIS
С
С
77FL1EN1
          0.0
C
С
  REDE DO EMTP
С
*" SEGMENTO: IMPEDÂNCIA DE FONTE ***
С
C.....
C
С
  RESISTÊNCIA DE FONTE
С
  (-BUS 1 (-BUS2 (-BUS3(-BÜS4 ( - R ( - L ( -C
С
С
 FONT-AREAT-A
                     0.001
                                                              1
 FO.VT-BRE.AT-B
                     0.001
                                                              1
                     0.001
 FONT-CREAT-C
                                                              1
                 «* SEGMENTO: NÚCLEOS *"
С
C.....*
С
С
  DADOS DOS NÚCLEOS E ENROLAMENTOS
С
  CONJUNTO DE NÚCLEOS 1 A 3 - TRANSFORMADORES 2 ENROLAMENTOS
С
С
 TRANSFORMER
                    0.087 182.4 TRANSI
C <**+*+> Cards punched by support routine on 18-Apr-95 11.26.56 <*****>
 8.72612235E-02 1.82389080E*02
 1.47830850E+02 2.09720084M2
         9999
1NU1EN1NU2EN2
                          19.7 48.62
2NU4EN1NU1EN2
                          2.6 17.78
3NU1EN3REAT01
                          21.3 14.58
 TRANSFORMER TRANSI
                              TRANS2
1.VU2EN1.VU3EN2
2NU6EN1NU2042
3NU2EN3NU1EN3
 TRANSFORMER TRANSI
                              TRA.NS3
1NU3BN1NU1EN2
2MI5EN1.NU3EN2
3VU3HN3NU2EN3
```

```
C
C
C
   CONJUNTO DE NÚCLEOS 4 A 6 - TRANSFORMADORES 2 ENROLAMEYTOS
C
C
 TRANSFORMER
                     0.087 182.4 TRANS4
C <-----> Cards punched by support routine on 18-Apr-95 11.26.56 <----->
 8.72612235E-02 1.82389080E*02
  1.47830850E«02
                2.09720084E*02
          9999
                           19.7 48.62
 1.NU4EN1NU5EN2
 2NEITRONU4EN2
                           2.6 17.78
 3NU4EN3REAT02
                           21.3
                              14.58
 TRANSFORMER TRANS4
                               TRA.NS5
 1NU5EN1NU6EN2
 2NEUTRONU5EN2
 mm
 TRANSFORMER TRANS4
                               TRANS6
 3NU6EN3NU5EN3
C
               c •
С
                     SEGMENTO: RESISTORES .AMORTECEDORES »«
                                           *
С
       .
               .
                     C
C
  RESI STORES .AMORTECEDORES
C
 TRANS1NU2EN2DIVIDEDELTAT 2.960
 TRANS2NU3EN2DIVIDEDELTAT 2.960
 TRANS3NU1EN2DIVIDEDELTAT 2.960
 TRANS4NU5EN2DIVIDEDELTAT 2.960
 TRANS5NU6EN2DIVIDEDELTAT 2.960
 TRANS6NU4EN2DIVIDEDELTAT 2.960
С
C.....
                  "« SEGMENTO: REFERENCI.AS PARA A TERRA »«
С
C.....*....*
С
   RESISTÊNCIA NO NEUTRO DO REATOR
C
C
 NEUTRO
                       1.E9
C
   RESISTÊNCIAS NOS DELTAS DOS SECUNDÁRIOS
С
С
 NU1EN3
                       1.E9
 NU2E.N3
                       1.E9
 NU3EN3
                       1.E9
                       1.E9
 NU4EN3
                       1.E9
 NU5EN3
 NU6EN3
                       1.E9
```

. 4 «• SEGMENTO: PH DE TENSÕES »•« . NU1EN1NU2EN2 1.69 .NU2EN1NU3EN2 1.E9 NU3EN1NU1EN2 1.E9 NU4EN1NU1EN2 1.E9 NU6EN1NU2EN2 1.E9 NU5EN1NU3EN2 1.E9 NU4EN1NU5EN2 1.E9 .VEUTRONU4EX2 1.E9 NL'5EN1NLI6EN2 1.E9 NEITRONU5EN2 1.E9 NU6EN1NU4EN2 1.E9 NEUTRONU6EN2 1.E9 С.....• *»* SEGMENTO: CHAVES ** C C.....*...... C C(-BÜS1(-BUS2(-TCLOSE(-TOPEN(-IEPSILON(-VFLASH C EAT-A.NU1EN1 1.1 REAT-BNU2EN1 l.Ū REAT-CNU3EN1 10 10 1.1 С.....• : FONTES *" C ttt C C (•BUSI (AMPLITUDE(FREQUENCY (····· TI MEO (..... AI (-TIMEI (-TSTART(-TSTOP С HFONT-A 215963. 60.0 0.0 •1. 14FONT-B 215963. 60.0 -120.0 •1. 14FONT-C 215963. 60.0 120.0 -1. С BLANK С . С *« SEGMENTO: TENSÕES NAS BARRAS **« C C (-BUS1(-BUS2(-BUS3... C REAT-AREAT-BREAT-CI..... *« SEGMENTO: x 1945. 13.430.0 FONT-AREAT-A \$CLOSE. UNITM STATUS KEEP BEGIN NEU DATA CASH

2

2

2 2

2

2

2

ż

1

2

ANEXO 3

LISTAGEM DO ARQUIVO DE SAIDA DO ATP

Input data card images are show below, all 80 columns, character by character Descriptive interpretation of input data cards. J 1 2 3 4 5 6 7 0 8 012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 C data:RSB1.DAD Comment card. Marker card preceding new EHTP data case. BEGIN NEK DATA CASE Disconnect disk file from I/O unit. JCLOSE, UNIT=4 STATUS DELETE JOPEN, UNIT=4 FILE=RSB1.PL4 FORM=FORMATTED Connect disk file to I/O unit. Comment card. KOMPAR * 1. С Comment card. KOMPAR = 1.TESE MESTRADO UFPE Comment card. C DALTON 0. C. BRASIL Comment card. C Comment card. = 1. C MODELAGEM REATOR SATURADO MN-TRIPLER Comment card. = 1. SIMULAÇÃO DO REGIME PERMANENTE COM FONTE DE TENSÃO IDEAL (PCC INFINITA) C Comment card. CARACTERÍSTICA DO REATOR BÁSICO 1 • 1. C VN=230 KV SN=18 MVA Comment card. = 1. C Comment card. SATÜHACAO:2 PTOS/JOELHO=1.0 PU/XAC=25%/XM=100000% B.ASE 48.62 KV 3 MVA • 1. C Comment card. : 1. VI=48.62 KV V2=17.78 KV XD=15% BASE 3MVA C Comment card. VS=14.58 KV XD=40% BASE 3 MVA - 1. C Comment card. - 1. C Comment card. : 1. C Comment card. C FONTE INFINITA VT=1.30 PU = 1. Comment card. • 1. C Comment card. C • 1. Comment card. • 1. C SEGMENTO: CARTÕES MISCELLANEOUS "« ttt Comment card. C : 1. Comment card. C DELTAT (· · · TMAX (· · · X OPT (· · · C OPT (· EPSLIN (· TOLMAT = 1. Misc. data. 1.000E-05 5.000E-02 6.000E+01 10.E-6 50.E-3 60. 0. Comment card. C -IOuT(--IPLOT(-IDOUBL(-KSSOIT(-M.AXOLT(-IPUN(-1. 1/-ICAT(--ENERG(-Misc. data. 111 1 0 0 2 0 0 2 Comment card. C.....•---1. Electric network, too. But TACS data first ... TACS HYBRID Comment card. KOMPAR = 1. * c..... Comment card. «« SEGMI:.iiO: TACS *« KOMPAR = 1.C Comment card. $\frac{\text{KOVPAR}}{1 \setminus 1 \cdot 1 \cdot 1} = 1.$ *c*..... Comment card. = 1. C Comment card. KOMPAR = 1. C BLOCOS DE RINC*m* Comment card. KOMPAR = 1. ſ TACS function •AUXI1A" Order = 0AUX IIA •REAT-A 2.917 2.9170E+00 TACS function "AUXIIB" 2.917 Order = 02.9170E+00 AUXIIB +REAT-B TACS function "AUXI1C". Order : 0 2.9170E+00 AUX HC +REAT-C 2.917 TACS function "AUXI2A". Order = 01.0670E«00 AUXI2A •REAT-A 1.067 TACS function "AUX12B" Order = 01.0670E+00 AUXI2B •REAT-B 1.067 TACS function •AUXI2C". Order = 0 AUXI2C •REAT-C 1.0670E*00 1.067 •AUXI31". Order = 08.7500E-01 AUXI31 • REATO 1 0.875 •AUXI32". Order - 0 8.7500E-01 AUX 132 •REAT02 0.875 TACS function •FMMTRI". Order = 01.0000W0 FMMTRI •AUX IIA •AUXI2C •AUXI31 1.000 TACS function "F.HMTR2", Order = 01.0000Et00 FMMTR2 •AUXIIB -AUXI2A •AUX 131 1.000 " r W R 3 \ Order = 0FMMTR3 •AUXIIC •AUX12B •AUX131 1.0000E+00 1.000 FMMTR4 •AUX NC •AUXI2A •AUXI32 •rWR4V Order = 01.0000»00 1.000 Order = 0'FMMTR5". 1.0000E«00 FMMTR5 •AUXI 111 •AUXI2C •AUX 132 1.000 TACS function "F.M.MTH6". Order = 0 1.0000K*00 PMHTR6 •AUXIIA -AUX 1211 •AUX 132 1.000

TACS function 'PL1EN1'. Order = IFLIENI »MI1EN1 -NU2EN2 Numer. 1.00E*00 0.00E400 1.0 Dcnoa. 0.00E+00 1.00E+00 10 Comment card. C Comment card. С **BLOCOS DE FONTES** Comment card. C TACS source. **90NU1EN1** TACS source. TACS source. 91 E A T • A TACS source. 91REAT-B TACS source. 91REAT-C TACS source. 91REAT01 TACS source. 91EAT02 Comment card. KOMPAR = 1. C VARIÁVEIS PARA LMPRESSAO Comment card. C Comment card. = 1. C Names of TACS variables for output vector. 33IWRIiWR2rWR3rWR4rWR5rWR6FLIENI Comment card. KOMPAR = 1.C CONDICÕES INICIAIS Comment card. KOMPAR = 1. C Comment card. KOMPAR = 1. C TACS initial condition. "FL1EN1" 77FL1EN1 0.0 Blank card terminating all TACS data cards. BLANK Comment card. • 1. C Comment card. C REDE DO EMTP • 1. Comment card. С KOMPAR : 1. Comment card. С » *" SEGMENTO: IMPEDÂNCIA DE FONTE "« Comment card. C Comment card. Comment card. C Comment card. RESISTÊNCIA DE FONTE C Comment card. • 1. C Comment card. С (-BUS1 (-BUS2(-BUS3(-BUS4(-R(-L(-C)))))))Comment card. C Series R-L-C. 1.000E-03 I FONT-.AEAT-A 0.001 Series R-L-C. 1.000E-03 I 0.001 FONT-BEAT-B Series R-L-C. 1.000E-03 I FONT-CEAT-C 0.001 Comment card. - 1. Comment card. *" SEGMENTO: NÚCLEOS *»» Comment card. Comment card. Comment card. DADOS DOS NUCLEUS E ENROLAMENTOS C Comment card. C Comment card. A 3 - TRANSFORMES 2 ENROLAMENTOS Comment card. • 1. Sat. Xformer. .700E-02 I.824E*02 0. Comment card. 0.087 182.4 TRANSI s 1. Comment card. <----> Cards punched by support routine on 08-Feb-96 15.21.12 <----> L72612235E-02 1.823890606*02 Breakpoint. 8 72612E-02 i.82389E«02 Breakpoint. 1 47831E+02 2.09720M2 1.47830850E«02 2.09720084E*02 Special termination-of points card. binding 1. 00 5.9I00E*01 4.8620E+01 1NU1EN1NU2EN2 59.1 48.62 binding 2. 00 7.9000M0 1.7780E«01 2NU4EN1NU1E.N2 7.9 17.78 00 2.8300E*01 1.4580K+01 binding 3. 3NU1EN3REAT01 28.3 14.58 "TRANSI" TRANSFORMER TRANSI Transformer copy using reference name TRANS2 Winding 1. (No values read, since copy) 1NU2EN1NU3EN2 binding 2. (No values read, since copy) 2NU6EN1AI2EN2 (No values read, since copy) binding 3. 3.NU2EN3.NU1EV3 Transformer copy using reference name 'TRANSI TRANSFORMER TRANSI TRANS3 binding 1. (No values read, since copy) JNU3EN1NU1EN2 (No values read, since copy) binding 2. 2NU5ENINLI3EN2 binding 3. (No values read, since copy) 3.NII3EN3.NU2EN3

)

0

140

Comment card. C Comment card. C Comment card. C 4 A 6 -2 E Comment card. = 1. C Comment card. C Sat. Xformer. 0.087 182.4 TRANS4 8.700E-02 1.824E+02 0. Comment card. C Comment card. C <-----> Cards punched by support routine on 08-Feb-96 15.21.12 <++-+> 8.72612235E-02 1.82389080[^]02 Breakpoint. 8.72612E-02 1.82389^02 1.47831E+02 2.09720^02 1.47830850E+02 2.09720084E+02 Breakpoint. Special termination-of-points card. 0.0000H0 5.9100E+01 4.8620E+01 59.1 48.62 Winding 1. 1NU4EN1NU5EN2 O.0000E+00 7.9000E+00 1.7780E+01 binding 2. 7.9 17.78 binding 3. 0.0000E+00 2.8300E+01 1.4580E+01 28.3 14.58 Transformer copy using reference name •TRANS4* TRANSFORMER TRANS4 TR.ANS5 binding 1. (No values read, since copy) 1.NU5EN1NU6EN2 binding 2. (No values read, since copy) binding 3. (No values read, since copy) 3NU5EN3NU4EN3 Transformer copy using reference name "TRANS4" TRANSFORMER TRANS4 (No values read, since copy) 1.NU6EN1NU4EN2 binding 1. binding 2. (No values read, since copy) binding 3. (No values read, since copy) 3NU6EN3NU5EN3 Comment card. Comment card. Comment card. SEGMENTO: RESISTORES AMORTECEDORES Mi Comment card. Comment card. C Comment card. C **RESISTORES AMORTECEDORES** Comment card. C Series R-L-C. TRANS1NU2EN2 Series R-L-C. TRANS2.NII3E.N2 Series R-L-C. TRANS3NU1EN2 Series R-L-C. TRA.NS4NU5E.N2 Series R-L-C. TRANS5NU6EN2 TRA.NS6NU4EN2 Series R-L-C. Comment card. C Comment card. С Comment card. *« SEGMENTO: REFERENCIAS PARA A TERRA »« Comment card. Comment card. C Comment card. RESISTÊNCIA NO \ С Comment card. C Series R-L-C. **NEUTRO** 1.E9 Comment card. С Comment card. С RESISTÊNCIAS NOS DELTAS DOS SECUNDÁRIOS Comment card. C Series R-L-C. 1.E9 Series R-L-C. 1.E9 Series R-L-C. 1.E9 Series R-L-C. NU4EN3 1.E9 Scries R-L-C. 1.E9 NU5EN3

1.E9

Scries R-L-C. Series R-L-C.

Comment card.		
Comment card.		
Comment card.	*« SEGMENTO: PEDIDO DE TENSOES «"	
Comment card.		
Comment card.		
Series R-L-C.	NU1EN1NU2EN2 1.E9	
Series R-L-C.	NU2EN1.NU3EN2 1.E9	
Series R-L-C.	NU3EN1NU1EN2 1.E9	
Series R-L-C.	NU4EN1NU1EN2 1.E9	
Series R-L-C.	1. E 9	
Series R-L-C.	NU5EN1NU3EN2 1.E9	
Series R-L-C.	NU4EN1NU5EN2 1.E9	
Series R-L-C.	1. E 9	
Series R-L-C.	NU5EN1M'6EN2 1.E9	
Series R-L-C.	1.E9	
Series R-L-C.	1.E9	
Series R-L-C.	1.E9	
Blank card ending branches NTOT - 58 34	BLANK	
Comment card. = 1	C• •	
Comment card. KOMPAR = 1	IC '* SEGMENÏI MI	
Comment card. KOMPAR = 1	: c	
Comment card. KOMPAR = 1	חו	
Comment card. KOMPAR = 1	C (• BUS 1 (• BUS 2 (- T C L 0 S E (- T O P E N (• 1 E PS ILON (-) T L A S H	
Comment card. KOMPAR = 1		
Switch. 1.00E'00 .00E400 5.00E+00 .00E+00	REAT-A.VUIENT -1.0 1.0	
Switch. 1.00E+00 -00E+00 5.00E+00 .00E+00	REAT-BNU2EN1 -1.0 1.0	
Switch. 1.00E+00 .00E+00 9.00E+00 .00E+00	REAT-C.NU3EN'I -1.0 i.Û	
Switch. 1.00E+00 .00E+00 5.00E+00 .00E+00	REAT01NU3EN3 -1.0 1.0	1
Switch. 1.00E+00 .00E+00 3.00E+00 .00E+00	REAT02NU6EN3 -1.0 1.0	1
Comment card. KOMPAR = 1	C	
Comment card. KOMPAR = 1	Ç	
Blank card ending switches	BLANK	
Comment card. • 1	C +	
Comment card 1	w* SEGMENTO: FONTES '*«	
Comment card. $= 1$		
Comment card.	C	
Comment card.	C (-BUS1 (AMPLITIN)E(FREQUENCY(-TIME0(Al(-TIME1 (-TSTART(-TSTOP	
Comment card.		
Source. 2.44E+051	14FONT-A 244132.	
Source. 2.44E+05 6.00E+01 - 20E+02 .1	14FONT-B 2441321	
Source. 2.44E+05 6. ÛW1 20E+02 -1	14FO.NT-C 2441321	
Comment card. $= 1$.	C	
י יוו ווו		

List of input elements that are connected to each node. Only the physical connections of multi-phase lines are shown (capacitive and inductive coupling are ignored). Repeated entries indicate parallel connections. Switches are included, although sources (including rotating machinery) are omitted -- except that U.K. usage produces extra, internally-defined nodes

From bus name Names of all adjacent busses.

FO.NT-A	REAT-A*
REAT-A	FOOT-A'NUIENI*
F0.ÏÏ-B	REAT-B*
REAT-B	F0.VT-B»NII2ENP
FONT-C	REAT-C*
REAT-C	FONT-C*NU3EN1*
TRANSI	.NU1EN1*.NU2EN2*.NI12EN2*.NL12EN2*M12EN2*
NU1EN1	REAT-A*TRANS1*NU2EN2*
	MNSI*mNSI*mA.NSI*TMNSI*.NL'IENI*NLI6ENI*.NLi6ENI*
NIM ENI	NUIEN2 * NU1EN2 »TRANS4 * NU5EN2 *
	.NLMENI*.NU4ENI*mNS3*mA.NS3*TR.A.NS3*TRA.NS3*.NLi3ENI*
	TERRA *REAT01*NU2EN3*
	NU3EN3
	NU3EN2.NU3EN2*NU3EN2*NU3EN2*
	REAT-B * TRANS 2 * NU3EN2 *
	MNS2*TRANS2*TRANS2*TRA.NS2*NII2EN1*NLI5EN1*NII5EN1*
	.\112en2*.NU2EN2*NU4EN2*TRANS6*
	TERRA *.NU1EN3*NU3EN3*
TRANS3	NU1EN2*NU1EN2*NU1EN2*NU3EN1*
	REAT-C*NU1EN2*TRANS3*
	NU3EN2 * NU3EN2 * TRANS5 * NU6EN2 *
	TERRA *REAT01*NU2EN3*
TRANS4	NIi4ENI*.NU5EN2*.NU5EN2*NU5EN2*NU5EN2*
NU5EN2	NI'4ENI*TRANS4 *TRANS4*TRANS4 *TRANS4 *NETR0*NELTR0*
	TERRA *.NU5EN2*NII5EN2*.\li4EN2*.NI'4EN2*.NII6EN2*.NU6EN2*
	!^i6ENI*NRrrR0*NUTO*MNS6*MNS6*TMNS6*TRA.NS6*
	TERRA *REAT02*NU5EN3*
	NU4EN3*NU6EN3*
TRANS5	.NLI5EN1*.NU6EN2*NU6EN2*.NII6EN2*NI'6EN2*
	NL'5ENI*NUITRO*Na™*MNS5*mANS5*MNS5*TRA.NS5*
NU5EN3	*NU4EN3*.NU6EN3*
TRANS6	*NII4EN2*NU4EN2*NU4EN2*NU4EN2*
	TERRA *REAT02*NU5EN3*
	NU1EN3*NII2EN3*NLI3EN3*NEUTR0*NL14EN3*NII5EN3*.NU6EN3*

Nonlinear and time-varying resistances are ignored during the phasor solution, while nonlinear inductors are linearized.

Sinusoidal is printed Bus K	steady-state phasor solutio above the imaginary part, Phasor	All flows are away from a bus, and the real part, magnitude, or " The first solution frequency = 6.00000000E+01 Hertz.			agnitude, or "P" z. Power loss	
Dus K	Bus M Rectangular	r Polar	Rectangular	Polar	P and Q	P and Q
FO.NT-A	244132.	244132.	.27142593171448	.29032391476254	33131.877780659	.42143990868E-4
	0.0	0.0	1030336793285	-20.7868349	12576.909100919	0.0
	244131.99972857	244131.99972857	2714259317145	.29032391476254	-33131.87773852	
	.10303367933E-3	0.0000000	.10303367932855	159.2131651	-12576.90910092	
FONT-I	-122066.	244132.	2249427489005	.29032391108378	33131.877213537	.42143984736E-4
	-211424.5138767	-120.0000000	1835449074861	-140.7868355	12576.909329592	0.0
	-122065.9997751	244131.99972857	.2249427489005	.29032391108378	-33131.87717139	
	-211424.5136932	-120.0000000	.18354490748607	39.2131645	-12576.90932959	

FONT-C		-122066. 211424.5138767	244132. 120.0000000	046483182814 .28657860821113	.29032393109895 99.2131648	33131.879560935 12576.910030007	.4214399155E-4 0.0
	REAT-C	-122065.9999535 211424.51359012	244131.99972857 120.0000000	.04648318281397 2865786082111	.29032393109895 -80.7868352	-33131.87951879 -12576.91003001	
NUIENI		244131.99972857 . 10303367933E-3	244131.99972857 0.0000000	.27132963091794 1030079004261	.29022473389471 -20.7888240	33120.1226855 12573.762373409	12470025E-11 2.4890082
	TRANSI	244125.91196166 -16.03547815357	244125.91248831 -0.0037635	2713296309179 .10300790042608	.29022473389471 159.2111760	-33120.1226855 -12571.2733652	
mm		-61032.9999765 105712.2567951	122065.9998642 120.0000000	.046447964176 2865691503145	.29030895833246 -80.7933975	-16564.36510203 -6290.027913914	2169.338245783 4826.3961627
	NU1EN2	-96245.86353731 115144.92134882	150072.04656586 129.8911445	046447964176 .28656915031452	.29030895833246 99.2066025	18733.703347816 11116.424076657	
TRANSI		244125.91196166 -16.03547815357	244125.91248831 -0.0037635	•.0169857014202 10479636965417	.10616399175535 99.2066025	-2074.165154704 -12791.61846913	-2169.338245781 -4826.0632595
		147841.35877331 25778.902158045	150072.04656568 9.8911445	01698570142019 1047963696542	.10616399175535 -80.7933975	-95.1730910776 7965.5552095899	
M'IE\3		16669.730094284 4467.4076626232	17257.973016561 15.0024595	9624493693E-5 .25784332661E-5	.99638946679E-5 165.0024553	0744593998129 0429891617422	1489188065691 0.0000000
	REATO1	-12203.75369713 12202.705975634	17257.973155266 135.0024596	.9624493693E-5 2578433266E-5	.99638946679E-5 -14.9975447	0744594067562 .04298915109817	
TRANSI		244125.91196166 -16.03547815357	244125.91248831 -0.0037635	.28861603809E-5 7732117784E-6	.29879387876E-5 -14.9975446	.35229946693305 .09435737478764	14891880615208 0.0000000
	NU2EN2	147841.35877331 25778.902158045	150072.04656568 9.8911445	2886160381E-5 .77321177838E-6	.29879387876E-5 165.0024554	203380660781 0943573630031	
NU2EN1		-122065.9997751 -211424.5136932	244131.99972857 -120.0000000	2248722740194 1834744029611	.29022473389528 -140.7888240	33120.122685533 12573.762373519	296651592E-11 2.4890082
	TRANS2	-122076.8431123 -211411.2237418	244125.91248831 -120.0037635	.22487227401937 .18347440296113	.29022473389528 39.2111760	-33120.12268553 -12571.27336531	
NU6EN1		122065.99986397 .51301415183E-4	122065.99986397 0.0000000	2714001461997 .10305945822705	.29030895833111 159.2066025	-16564.36510191 -6290.027913924	2169.3382457676 4826.3961627
	NU2EN2	147841.35877331 25778.902158045	150072.04656568 9.8911445	.27140014619975 1030594582271	.29030895833111 -20.7933975	18733.703347674 11116.424076645	
TRANS2		-122076.8431123 -211411.2237418	244125.91248831 -120.0037635	.09924916905453 0376881358961	.10616399175492 -20.7933975	-2074.165154673 -12791.61846908	-2169.338245772 -4826.0632595
	NU3EN2	-51595.495236 -140923.8235069	150072.04656578 -110.1088555	0992491690545 .03768813589613	.10616399175492 159.2066025	-95.1730910997 7965.5552095628	
NU2EN3		-4465.976646373 -16670.11363995	17257.973118959 -104.9975409	.70452361479E-5 .70458412058E-5	.99638963602E-5 45.0024602	0744594168473 0429891624634	1489188318617 0.0000000
	NU1BN3	16669.730094284 4467.4076626232	17257.973016561 15.0024595	7045236148E-5 7045841206E-5	.99638963602K-5 -134.9975398	0744594150144 .04298916461792	

A solução geral destas equações diferenciais (2.6) é dada por:

$$V(x) = K, e + V_{2} e$$

$$\dot{I}(x) = \dot{I}_{e} -\gamma x + I_{2} e^{+\gamma x} \qquad fie \qquad \dot{V}_{2} e^{+\gamma x} \qquad (2.7)$$

$$onde \qquad Ze = \frac{R + jcoL}{jcoC}$$

As constantes $V_x e V_2$ devem ser determinadas através das condições de contorno, isto é, pelas condições de tensão e corrente conhecidas nos terminais da linha.

Os outros parâmetros das equações, definidos anteriormente, são caracterizados da seguinte forma:

- Constante de propagação

O termo y é denominado de constante de propagação. Em geral este termo é um número complexo escrito sob a forma:

r=a+jfi

A parte real a é a constante de atenuação e indica a taxa na qual a magnitude da onda atenua ao longo da linha. A parte imaginária (3 é o deslocamento de fase e atua como um deslocamento angular. Assim, por exemplo:

e

A distância x que torna o deslocamento de fase igual a 360° (P x = 2 7i) é denominada de comprimento de onda *X*, isto é:

$$\dot{A} = \frac{2k}{(1)}$$

- Impedância característica

O termo Zc denomina-se impedância característica da linha, definida, portanto, para uma dada frequência o. Desprezando-se as perdas na linha, esta impedância característica torna-se real e é dada por:

TRANS2		-122076.8431123 -211411.2237418	244125.91248831 -120.0037635	2112701435E-5 211288284E-5	.29879392976E-5 -134.9975403	.35229953416725 .09435736440953	.14891883157372 0.0000000
	NU3EN2	-51595.495236 -140923.8235069	150072.04656578 -110.1088555	.21127014348E-5 .21128828396E-5	.29879392976E-5 45.0024597	2033807025935 0943573638209	
NU3SNJ		-122065.9999535 211424.51359012	244131.99972857 120.0000000	0464573568997 .28648230338697	.29022473389428 99.2111760	33120.122685462 12573.76237336	144240175E-11 2.4890082
	TRANS3	-122049.0688494 211427.25921992	244125.91248831 119.9962365	.04645735689968 286482303387	.29022473389428 -80.7888240	-33120.12268546 -12571.27336515	
NU5EV1		-61032.99988747 -105712.2568464	122065.99986411 -120.0000000	.22495218202612 .18350969208599	.290308958332 39.2066025	-16564.36510194 -6290.027914035	2169.3382457478 4826.3961627
	NU3EV2	-51595.495236 -140923.8235069	150072.04656578 -110.1088555	2249521820261 183509692086	.290308958332 -140.7933975	18733.703347691 11116.424076775	
TRANS3		-122049.0688494 211427.25921992	244125.91248831 119.9962365	082263467635 0671082337574	.10616399175511 -140.7933975	-2074.165154625 -12791.61846911	-2169.338245748 -4826.0632595
	NI'IEM	-96245.86353731 115144.92134882	150072.04656586 129.8911445	.08226346763501 .06710823375743	.10616399175511 39.2066025	-95.17309112338 7965.5552095808	
NU3EN3		-12203.75369713 12202.705975634	17257.973155266 135.0024596	.25792602192E-5 9624272354E-5	.99638949019E-5 -74.9975327	0744594110985 0429891476139	1489188100649 0.0000000
	NU2EN3	-4465.976646373 -16670.11363995	17257.973118959 -104.9975409	2579260219E-5 .96242723536E-5	.99638949019E-5 105.0024673	0744593989664 .04298916826565	
TRANS3		-122049.0688494 211427.25921992	244125.91248831 119.9962365	773459765E-6 .2886C940026E-5	.29879388548E-5 105.0024673	.35229949446706 .09435730369804	.14891880950191 0.0000000
	NU1BN2	-96245.86353731 115144.92134882	150072.04656586 129.8911445	.77345976501E-6 2886094003E-5	.29879388548E-5 -74.9975327	2033806849651 0943573228608	
NU4ENJ		-61032.9999765 105712.2567951	122065.9998642 120.0000000	0464126997569 .28650807733123	.29024303105288 99.2016597	16560.060873942 6290.0281208826	.6004086117E-12 2.4893221
	TRA.VS4	-61016.06734913 105714.99978566	122059.91010334 119.9924728	.04641269975693 2865080773312	.29024303105288 -80.7983403	-16560.06087394 -6287.538798828	
NEUTRO		726618765E-11 445178042E-11	.8521492349E-11 -148.5054182	2714001538798 .10300789703735	.29029066533049 159.2161170	.756737954E-12 .9783442997E-12	4824.5656774314 -2171.5215630
	NU4BN2	25767.67837458 -25782.29005019	36451.333707399 -45.0162403	.27140015387976 1030078970374	.29029066533049 -20.7838830	4824.5656774314 -2171.521563047	
TRANS4		-61016.06734913 105714.99978566	122059.91010334 119.9924728	.09924917186324 0376692803232	.10615730213042 -20.7838830	-5019.001058025 4096.8474185268	-4824.565677432 2171.8544243
	NU5EN2	9444.2789638545 35206.609094056	36451.333707407 74.9837597	0992491718632 .03766928032324	.10615730213042 159.2161170	194.43538059334 -1924.992994219	
VU4KN3		-4461.010209001 16671.442996745	17257.972756918 104.9804720	.70431349001E-5 7047938725E-5	.99638942938E-5 -45.0195329	0744594026989 .04298914769926	1489187977557 0.0000000
	REAT02	16668.398255534 -4472.373251189	17257.972734451 -15.0195277	70431349E-5 .70479387254E-5	.99638942938E-5 134.9804671	0744593950567 0429891607121	

TRANS4		-61016.06734913	122059.91010334 119.9924728	2112071326E-5 .21135118552E-5	.29879386956E-5 134.9804675	.17615009579933 0471597190467	
	NU5EN2	9444.2789638545 35206.609094056	36451.333707407 74.9837597	.21120713262E-5 2113511855E-5	.29879386956E-5 -45.0195325	0272312974524 .0471597325561	
		-61032.99988747 -105712.2568464	122065.99986411	2249169234792 1834486157136	.29024303105252 -140.7983403	16560.060873912 6290.0281208642	2.4893221
	TRANS5	-61043.84170066 -105698.9642562	122059.91010326 -120.0075272	.22491692347915 .18344861571357	.29024303105252 39.2016597	-16560.06087391 -6287.53879881	
		726618765E-11 445178042E-11	.8521492349E-11 -148.5054182	.04649262131581 2865433763695	.29029066533058 -80.7838830	.4689020401E-12 114452644E-11	4824.565677433 -2171.5215631
		9444.2789638545 352C	36451.333707407 74.9837597	0464926213158 .28654337636954	.29029066533058 99.2161170	4824.565677433 -2171.521563051	
T R A N S 5		-61043.84170066 -105698.9642562	122059.91010326 -120.0075272	0170020322297 .10478694429977	.10615730213048 99.2161170	-5019.001058022 4096.8474185288	-4824.565677434 2171.8544243
		-35211.95733844 -9424.319043862	36451.333707346 -165.0162403	.01700203222966 1047869442998	.10615730213048 -80.7838830	194.43538058742 -1924.992994217	
		-12207.38798034 -12199.06962447	17257.972679469 -135.0195279	.25821246449E-5 .96235042848E-5	.99638949413E-5 74.9804794	0744593980778 .0429891661067	1489188074336
		-4461.010209001 16671.442996745	17257.972756918	2582124645E-5 9623504285E-5	.99638949413E-5 -105.0195206	0744594093558 0429891473443	
T R A N S 5		-61043.84170066 -105698.9642562	122059.91010326 -120.0075272	7743187369E-6 2885863699E-5	.2987938887E-5 -105.0195204	.1761500971573 0471597591458	.14891880788722
		-35211.95733844 -9424.319043862	36451.333707346 -165.0162403	.77431873685E-6 •28858636985E-5	.2987938887E-5 74.9804796	0272312892701 .04715974130924	
		122065.99986397 .51301415183E-4	122065.99986397	.27132962323655 1030594616177	.29024303105262 -20.7983403	16560.060873899 6290.0281208608	540012479E-12 2.4893221
	1 Ï A N 8 6	122059.90904979 -16.03552943187	122059.91010312 -0.0075272	2713296232366 .10305946161766	.29024303105262 159.2016597	-16560.0608739 -6287.538798806	
		726618765E-11 445178042E-11	.8521492349E-11 -148.5054182	.22490753256443 .18353547933194	.29029066533016 39.2161170	122563999E-11 .1661821424E-12	4824.565677422 -2171.5215630
		-35211.95733844 -9424.319043862	36451.333707346 -165.0162403	2249075325644 1835354793319	.29029066533016 -140.7838830	4824.565677422 -2171.521563035	
T R A N S 6		122059.90904979 -16.03552943187	122059.91010312 -0.0075272	0822471396338 0671176639763	.10615730213023 -140.7838830	-5019.001058013 4096.847418504	-4824.565677421 2171.8544243
		25767.67837458 -25782.29005019	36451.333707399 -45.0162403	.08224713963376 .06711766397628	.10615730213023 39.2161170	194.43538059198 -1924.992994215	
		16668.398255534 -4472.373251189	17257.972734451 -15.0195277	9625263188E-5 2575565308E-5	.99638962305K-5 -165.0195303	0744594153704 .04298915895089	1489188267007
	N U 5 B N 3	-12207.38798034 -12199.06962447	17257.972679469 -135.0195279	.96252631879K-5 •25755653079E-5	.99638962305E-5	0744594113303	

		122059.90904979 -16.03552943187	122059.91010312 -0.0075272	.28863911384E-5 .77235175086E-6	. 29879392616E-5 14.9804697	.17615012738215 0471597346373	.1489188265543
		25767.67837458 -25782.29005019	36451.333707399 -45.0162403	2886391138E-5 7723517509E-6	.29879392616E-5 -165.0195303	0272313008279 .0471597425182	
TRANS1		244125.91196166 -16.03547815357	244125.91248831 -0.0037635	.32094851062784 085983125454	.33226652605561 -14.9975401	39176.613315143 10492.78117597	16560.15665056 0.0
		147841.35877331 25778.902158045	150072.04656568 9.8911445	.085983125454	.33226652605561 165.0024599	-22616.45666458 -10492.78117597	
TRANS2		-122076.8431123 -211411.2237418	244125.91248831 -120.0037635	.2349378262542	.33226652605553 -134.9975401	39176.613315115 10492.781176039	16560.156650552 0.C
		-51595.495236	150072.04656578 -110.1088555	.23493782625423 .234958000783	.33226652605553 45.0024599	-22616.45666456 -10492.78117604	
TRANS3		211427.25921992	244125.91248831 119.9962365	0860106843736 .320941126237	.33226652605505 105.0024599	39176.613315069 10492.78117598	16560.156650503 0.0
		-96245.86353731 115144.92134882	150072.04656586 129.8911445	320941126237	.33226652605505 -74.9975401	-22616.45666457 -10492.78117598	
TOANS4		-61016.06734913 105714.99978566	122059.91010334 119.9924728	2348678210433 .23502796897201	386811 134.9804727	19588.346238211 -5244.284633762	16560.155934109
		9444.2789638545 35206.609094056	36451.333707407 74.9837597	.23486782104328 2350	.33226651886811 -45.0195273	-3028.190304101 5244.2846337617	
TRANS5		-61043.84170066 -105698.9642562	122059.91010326 -120.0075272	3209154840412	-105.0195273	19588.346238201 -5244.284633762	16560.155934117 0.0
		-35211.95733844 -9424.319043862	36451.333707346 -165.(.32091548404122	.33226651886819 74.9804727	5244.2846337617	
		-16.03552943187	122059.91010312 -0.0075272	.3209741022507 .08588751506921	.33226651886762 14.9804727	19588.346238142 -5244.284633762	16560.155934061 0.0
		25767.67837458 -25782.29005019	36451.333707399 -45.0162403	3209741022507	.33226651886762 -165.0195273	5244.2846337617	
		726618765E-11 445178042E-11	.8521492349E-11 -148.5054182	726618765E-20 445178042E-20	.8521492349E-20 -148.5054182	.3630791593E-31 116933456E-47	.3630791593E-31
	TERRA			.7266187652E-20 .4451780416E-20	.8521492349E-20 31.4945818		
		16669.730094284 4467.4076626232	17257.973016561 15.0024595	.44674076626E-5	.17257973017E-4 15.0024595	.14891881632017 979170087E-18	.14891881632017
	TERRA			4467407663E-5	.17257973017E-4 -164.9975405	0.0	
		-4465.976646373 -16670.11363995	17257.973118959 -104.9975409	4465976646E-5 1667011364E-4	.17257973119E-4 -104.9975409	14891881808736 •.346267069E-17	.14891881808736
				44659766464E-5 .1667011364E-4	.17257973119E-4 75.0024591		

		-12203.75369713 12202.705975634	17257.973155266 135.0024596	I22037537E-4 .12202705976E-4	.17257973155E-4 135.0024596	14891881871395 1202109159E-16	.14891881871395
	TERRA			12203753697E-4 .1220270598E-*	17257973155E-4 -44.9975404	0.0 0.0	
mm		-4461.010209001 16671.442996745	17257.972756918 104.9804720	4461010209E-5 .16671442997E-4	17257972757E-4	.14891881183927 .5180453505E-17	.14891881183927
				.4461010209E-5 16671443E-4	17257972757E-4 -75.0195280		
NU5EV3		-12207.38798034 -12199.06962447	17257.972679469 -135.0195279	1220738798E-4 1219906962E-4	.17257972679E-4 -135.0195279	,14891881050265 .472983198E-17	.14891881050265
	TERRA			.1220738798E-4 12199069624E-4	17257972679E-4 44.9804721	0.0	
		38255534 -4472.373251189	17257.972734451 -15.0195277	.16668398256E-4 4472373251E-5	.17257972734E-4 -15.0195277	,14891881145153 891078661E-18	.14891881145153
	TERRA			2-4 .44723732512E-5	17257972734E-4 164.9804723		
NU1E\1		244131.99972857 .10303367933E-3	244131.99972857	.96290640955E-4 2577890206E-4	-14.987731;	11.75381336445 !.1467274597091	4.9682196633689 0.0
	NU2BN2	147841.35877331 25778.902158045	150072.04656568 9.8911445	.25778902055E-4	165.0122685	-6.785593701081 -3.146727459709	
		-122065.9997751 -211424.5136932	244131.99972857	7047050454E-4	-134.9877311	11.753813364441 3.1467274597297	4.9682196633665
		-51595.495236 -140923.8235069	150072.04656578 -110.1088555	.70470504539E-4 .70500690186E-4	15.	-6.785593701074 -3.14672745973	
NU3EV1		-122065.9999535 211424.51359012	244131.99972857	•.2582013642E-4 .96279592241E-4	105.0122685	11.753813364427 3.146727459712	4.968219663352 0.0
	ММ	-96245.86353731 115144.92134882	150072.04656586 129.8911445	.25820136416E-' 9627959224E-4	i-4 -74.9877315	-6.785593701075 -3.146727459712	
M'4EN1		-61032.9999765 105712.2567951	122065.9998642	.35212863561E-4 9432664554E-5	.3645436765E-4 -14.!	-1.573147479222 1.5733637298729	.66446046036739 0.0
	VU1EN2	-96245.86353731 115144.92134882	150072.04656586 129.8911445	3521286356E-4 .94326645537E-5	.3645436765E-4 165.0039378	2.237607939589 •1.573363729873	
		122065.99986397 .51301415183E-4		•.2577535891E-' .2577890211E-^	.3645436765E-4 -134.9960622	1.573147479222 .5733637298664	
	NÜ2BN2	147841.35877331 25778.902158045	150072.04656568 9.8911445	.25775358909E-4 .25778902107E-4	.3645436765E-4 4 5.0039378	2.2376079395887 -1.573363729866	
NU5ENI		-61032.99988747 -105712.2568464	122065.99986411	•.9437504651E-5 .3521156666E-4	.3645436765E-4 105.0039378	-1.573147479222 1.5733637298654	.66446046036513 0.0
	NU3EN2	-51595.495236 -140923.8235069	150072.04656578 -110.1088555	.94375046515E-5 3521156	.3645436765E-4 -74.9960622	2.2376079395867 -1.573363729865	

-61032.9999765	122065.9998642	7047727894E-4	.99689985478E-4	5.8773754495945	4.9690466022905
105712.2567951	120.0000000	.70505647701E-4	134.9884709	-1.573570507541	0.0000000
9444.2789638545	36451.333707407	.7047727894E-4	.99689985478E-4	908328847304	
35206.609094056	74.9837597	705056477E-4	-45.0115291	1.5735705075409	
726618765E-11	.8521492349E-11	2576767837E-4	.36451333707E-4	.3622784625E-16	.66434986452407
445178042E-11	-148.5054182	.2578229005E-4	134.9837597	.1510255018E-15	0.0000000
25767.67837458	36451.333707399	.25767678375E-4	.36451333707E-4	.66434986452407	
-61032.99988747	-45.0102405	2578229005E-4 2582104255E-4	-45.0102405 .99689985478E-4	5.8773754495916	4.9690466022929
-105712.2568464	-120.0000000	962879378E-4	-105.0115291	-1.573570507541	0.0
-35211.95733844	36451.333707346	.25821042549E-4	.99689985478E-4	9083288472987	
-9424.319043862	-165.0162403	.96287937803E-4	74.9884709	1.5735705075409	
726618765E-11	.8521492349E-11	9444278964E-5	.36451333707E-4	.112677998E-15	.66434986452439
445178042E-11	-148.5054182	3520660909E-4	-105.0162403	106886986E-15	0.0000000
9444.2789638545	36451.333707407	.94442789639E-5	.36451333707E-4	.66434986452439	
35206.609094056	74.9837597	.35206609094E-4	74.9837597	.7737137753E-16	
122065.99986397	122065.99986397	.96298321489E-4	.99689985478E-4	5.8773754495739	4.969046602276
.51301415183E-4	0.0000000	.25782290101E-4	14.9884709	-1.573570507541	0.0000000
25767.67837458	36451.333707399	9629832149E-4	.99689985478E-4	9083288472978	
-25782.29005019	-45.0162403	257822901E-4	-165.0115291	1.5735705075409	
726618765E-11	.8521492349E-11	.35211957338E-4	.36451333707E-4	148905844E-15	.66434986452214
445178042E-11	-148.5054182	.94243190439E-5	14.9837597	441385157E-16	0.0000000
-35211.95733844	36451.333707346	3521195734E-4	.36451333707E-4	.66434986452214	
-9424.319043862	-165.0162403	9424319044E-5	-165.0162403	.172659196E-16	
244125.91196166	244125.91248831	0326360644504	.12611627806957	-3982.677774439	296429548E-12
-16.03547815357	-0.0037635	1218203714135	-104.9975401	14870.016300858	6285.6326390
147841.35877331	150072.04656568	.03263606445036	.12611627806957	3982.6777744391	
25778.902158045	9.8911445	.12182037141346	75.0024599	-8584.383661873	
-122076.8431123	244125.91248831	0891815041171	.12611627806954	-3982.677774465	404121181E-12
-211411.2237418	-120.0037635	.08917384660042	135.0024599	14870.016300848	6285.6326390
-51595.495236	150072.04656578	.08918150411715	.12611627806954	3982.6777744652	
-140923.8235069	-110.1088555	0891738466004	-44.9975401	-8584.383661865	
-122049.0688494	244125.91248831	.1218175685675	.12611627806935	-3982.677774443	285771407E-12
211427.25921992	119.9962365	.03264652481303	15.0024599	14870.01630083	6285.6326390
-96245.86353731	150072.04656586	1218175685675	.12611627806935	3982.6777744428	
115144.92134882	129.8911445	032646524813	-164.9975401	-8584.383661866	
-61016.06734913	122059.91010334	.0892080614947	.12611627534145	1990.5395436577	.5928590951E-13
105714.99978566	119.9924728	.08914727517069	44.9804727	7435.023173799	6285.6323670
9444.2789638545	36451.333707407	0892080614947	.12611627534145	-1990.539543658	
35206.609094056	74.9837597	0891472751707	-135.0195273	-1149.390806752	

TRANS5		-63043.84170066 -105698.9642562	122059.91010326 -120.0075272	1218078357234 .03268280989122	.12611627534148 164.9804727	1990.5395436577 7435.0231737953	995870053E-13 6285.6323671
	NU6EN2	-35211.95733844	36451.333707346	.12180783572342	12611627534148	-1990.539543658	
		-9424.319043862	-165.0162403	0326828098912	-15.0195273	-1149.390806745	
TRANS6		122059.90904979	122059.91010312	.03259977422871	12611627534127	1990.5395436577	.2814415367E-12
		-16.03552943187	-0.0075272	1218300850619	-75.0195273	7435.0231737729	6285.6323670
	N M	25767.67837458	36451.333707399	0325997742287	12611627534127	-1990.539543658	
		-25782.29005019	-45.0162403	.12183008506191	104.9804727	-1149.390806744	
Total	network]	loss P-loss by su	ming injections =	9.939562962284M4			

Output for steady-state phasor switch currents.

Node-K	Node-M	I-real	I-imag	I-maon	Degrees	Power	Reactive
REAT-A	NUIEN1	2.71425933E-01	-1.03033679E-01	2.90323916E-01	-20.7868	3.31318779E+04	1.2576909IE*04
REAT-B	.NU2EN1	-2.24942745E-01	-1.83544905E-01	2.90323907E-01	-140.7868	3.31318767E+04	1.25769091E+04
REAT-C	.NU3EN1	-4.64831903E-02	2.86578597E-01	2.90323921E-01	99.2132	3.31318788E+04	1.25769086E+04
REAT01	NU3EN3	-9.62449364E-06	2.57843309E-06	9.96389457E-06	165.0025	7.44594054E-02	-4.29891518E-02
REAT02	NU6EN3	7.04313492E-06	-7.04793859E-06	9.96389421E-06	-45.0195	7.44593949E-02	4.29891596E-02

Solution at nodes with known voltage. Nodes that are shorted together by switches are shown as a group of names, with the printed result applying to the composite group. The entry "MVA" is SQRT($P^{**2} \cdot Q^{**2}$) in units of power, while "P.F." is the associated power factor.

Node	Source	node voltage	Injected	source current	Injecte	d source power
name	Rectangular	Polar	Rectangular	Polar	P and Q	MVA and P.F.
FONT-A	244132.	244132.	.2714259326458	.29032391563324	33131.877894342	35438.679085688
	0.0	0.0	1030336793285	-20.7868348	12576.909100919	0.9349072
FO.NT-B	-122066.	244132.	2249427451752	.29032390687265	33131.876764654	35438.678016317
	-211424.5138767	120.0000000	1835449053906	-140.7868354	12576.909063676	0.9349072
FONT-C	-122066.	244132.	0464831902646	.29032392126015	33131.87883424	35438.679772541
	211424.5138767	120.0000000	.28657859703526	99.2131666	12576.908560292	0.9349073

Comment card *« SEGMENTO: TENSÕES NAS BARRAS Comment card ic Comment card <u>k</u> • Comment card r Comment card |C (-BUSI(-BUS2(-BUS3. Comment card c Zero-frequency (dc) steady-state solution for TACS follows. TACS value TACS value TACS value (Name) TACS value (Nane) TACS value (Naie) (Name) (Nane) FMMTR5 FMMTR6 0.0000000E* PWTR4 0.00000000Et00 0.0000000E+00 FL1EN1 0.0000000E'00 FMMTR3 FWR2 0.0000000E*00 FMMTR1 0.0000000E* AUXI32 0.0000000E<00 AUXI2C 0.0000000E*00 AUXI31 (AUXI2B 0.00000000E*00 AUXI2A AUX I IB 0.0000000E+00 AUXI1A 0.0000000E+00 0.0000000E* AUXIIC 0.0000000E*00 ISTEP 0.0000000E* DELTAT I FREQHZ 6.0000000E+01 OMEGAR 3.76991118E+02 TIMEX ZERO 0.0000000E+00 PLUS1 1.0000000E* MIVUS1 -I UNITY 10000000E+00 INF.IIY L0000000E*19 0.000000ÛW0 REAT-B 0.0000000E+00 PI 3.14159265E+00 NU1EN1 REAT-A 0.0000000E* REAT-C 0.0000000E+00 REATO 0.0000000E* Initial flux of coil "TRANSr -6.84231972E+01 _ t0 Initial flux of coil "TRANS2' = -1.86973636E+02to This means that the steady state solution is not really sinusoidal, Warning. Preceding flux exceeds the 1st segment -- Initial flux of coil 'TRANS3' to "W1EN2" 2.55396833E+02 Warning. Preceding flux exceeds the 1st segment This means that the steady state solution is not really sinusoidal, to "NU5EN2' —- Initial flux of coil "TRANS4" » 1.87029315E+02 Warning. Preceding flux exceeds the 1st segment This means that the steady state solution is not really sinusoidal, -- Initial flux of coil 'TRANS5' to "NU6EN2" = -2.55376428E+02This means that the steady state solution is not really sinusoidal. Warning. Preceding flux exceeds the 1st segment -- Initial flux of coil "TRANS6" to = 6.83471129E+01 Card of names for time-step loop output, REAT-AREAT-BREAT-C Blank card ending requests for output variables.

Column headings for the 27 EHTP output variables follow. These are divided among the 5 possible classes as follows First 15 output variables are electric-network voltage differences (upper voltage minus lower voltage);

Next 5 output variables are branch currents (flowing from the upper node to the lower node);

110Λ	Next	7	output variables	belong to	TACS (with	"TACS' ar	1 internally-a	added upper	r name of	pair)	
--------------	------	---	------------------	-----------	------------	-----------	----------------	-------------	-----------	-------	--

INCAL	/ Out	pui v	allaules	belong to TA		TACS all fill	ernany-au	ueu	upper nan	ie of par	1).			
Step	Time	9	NU1EN1	NU2EN1	NLI3EN1		NU6EN1	NU	ISEN1	NU4BN1	Ň	EUTF	RO NU5EN1	.NEUTRO
			NU2E.N2	NU3EN2	NU1EN2	NU1EN2	NU2EN2	NU	3EN2	NU5EN2	N	U4EN	NU6EN2	NU5EN2
			NU6EN1	NEUTRO	REAT-A	R E A T - B	REAT-C	RE	ATOI	REAT02	F	ONT.	A FOVT-B	FONT·C
			NU4EN2	NU6EN2				NL	I3EN3	NU6EN3	R	E A T -	A REAT-B	R E A T • C
			TACS	TACS	TACS	TACS	T.ACS	TA	CS	TACS				
			FWTR1	FMMTR2	FMMTR3	FMMTR4	FMMTR5	FM	MTR6	FL1EN1				
т	Phasor	1(0)	= 2.7142	593E-01		Switch	• R E A T • A "	to	'NU1EN1'	closed	in	the	steady-state.	
ttt	Phasor	1(0)	2.2494	275E-01		Switch	"REAT·B"	to	"NU2EN1	closed	in	the	steady-state.	
ttt	Phasor	1(0)	4.6483	190E-02		Switch	"REAT-C"	to	"NU3ENF	closed	in	the	steady-state.	
ttt	Phasor	1(0)	= -9.6244	936E-06		Switch	" REATO 1"	to	"NU3EN3"	closed	in	the	steady-state.	
ttt	Phasor	1 (0)	= 7.0431	349E-06		Switch	"REAT02"	to	"NU6EN3"	closed	in	the	steady-state.	

.641 -70470.505	-25820.136 35212.	-25775.359 -9437.5047 -70477.279 -25767.678 -25821.043 -9	444.279
.3215 35211.9573	244132.	96245E-5 .704313E-5 .2714259322249427504	648318

.005	3300.74879	98600.1091	-25077.185	1421.06075	33152.0542	-5433.5586	-28158.447	-7051.7099	176036.998	62535.4101	
	-6477.4289	-4890.4962	-75441.036	238797.15	-163356.11	188.296915	-27.458321	98.9562602	-20.053995	-78.902311	
	537.603978	.675967247	-44.000628	-359.7704	1.66523157	286.026993	299.874752				
.01	-117893.64	106.532597	20910.0256	-42733.898	2232.92688	6060.01691	159410.421	55703.7505	-17076.151	-6389.9382	
	-15257.998	-3929.3397	-197506.87	-25518.853	223025.726	157.033569	76.7082313	-64.392748	110.473568	-46.080827	
	-1.2610298	528.362834	-114.8887	1.4089916	438.539344	-238.58924	-86.330467				
.015	15466.7768	-160070.86	16979.9374	3976.75703	-55981.816	6334.25159	-108.62098	-2275.8666	-20833.528	-5978.2607	
	117136.729	42432.8022	197507.001	-223025.63	25518.6322	76.0720382	157.122202	-63.89141	-46.716668	110.608085	
	-237.82704	-1.5373527	439.053503	528.297846	-116.80942	.957368205	-139.57905				
2000	.02	7191.63172	27251.2813	-174551.86	4293.63086	7912.06274	-62476.458	-97759.891	-33968.619	27127.2513	7379.13392
------	------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
		-2994.7583	-1313.8725	75440.8378	163356.272	-238797.11	-28.362997	188.484091	99.0515073	-78.356579	-20.694883
		286.197065	-359.07172	-1.5781251	-1.131352	-41.561123	537.463296	283.944298			
2500	.025	-138945.38	15245.1889	11790.8131	-49067.425	5887.34097	3191.42622	18540.1792	5894.32388	14483.0118	3523.55857
		-139596.2	-49337.888	-244132.	122065.902	122066.098	-119.64788	119.283458	33008406	98.2768783	-97.946748
		-1.1455719	182.333957	-495.26399	-180.98544	495.55586	-1.4512585	177.556403			
3000	.03	-3379.9972	-101853.44	22136.8721	-1438.1374	-33125.318	5084.30086	31455.3282	7026.24193	-173084.61	-62191.004
		6587.18435	4909.56919	75441.0358	-238797.15	163356.114	-188.29731	27.4599552	-98.957012	20.0538487	78.903209
		-537.60747	67593864	44.0030576	359.775253	-1.6651866	-286.0276	-164.07668			
3500	.035	117816.424	-3260.6477	-23752.257	42716.8703	-2207.5189	-6403.9381	-156214.34	-55727.516	19934.5235	6731.65287
		15366.0225	3948.35224	197506.872	25518.8533	-223025.73	-157.03365	-76.709819	64.3929765	-110.47436	46.0813878
		1.26102961	-528.36545	114.891106	-1.4089896	-438.54363	238.58936	222.128992			
4000	.04	-15541.889	157009.758	-19731.078	-3994.2517	56007.2285	-6676.295	3209.72755	2252.15633	23599.592	6318.22342
		-117032.42	-42413.298	-197507.	223025.633	-25518.632	-76.070584	-157.12107	63.8908327	46.7160208	-110.60686
		237.825318	1.53735343	-439.04797	-528.29267	116.807217	95737045	275.377263			
4500	.045	-7264.7315	-30221.749	171889.226	-4311.4698	-7886.8075	62136.4937	100768.679	33945.1451	-24450.718	-7041.207
		3095.70353	1333.83855	-75440.838	-163356.27	238797.109	28.3618177	-188.48484	-99.051453	78.35628	20.6951275
		-286.1982	359.06976	1.57812671	1.13135305	41.5593337	-537.46347	-148.14595			
5000	.05	138874.264	-18127.963	-14367.846	49049.1884	-5862.1702	-3529.4325	-15620.714	-5917.6494	-11893.183	-3187.5214
		139693.787	49358.3179	244132.	-122065.9	-122066.1	119.649453	-119.28434	.329997012	-98.277843	97.9477999
		1.14556982	-182.3353	495.269462	180.987826	-495.56057	1.45125997	-41.759441			

Extrema of output	variables f	ollow. Or	der and col	umn positio	ning are t	he same as	for the pred	eding time:	step loop o	utput.
Variable maxima :	352412.696	.4757481E7	.3129914E7	350565.095	582893.062	.1877547E7	.4942387E7	633062.666	.4323576E7	.233033E7
	.373008E7	.1789302E7	244132.	244131.878	244131.978	199.635417	199.633062	113.22876	113.228534	113.229555
	537.785944	537.787148	537.790895	537.710593	537.705491	537.707514	301.141033			
Times of maxima :	.68E-3	.2E-4	.2E-4	.48-4	.2E-4	.2E-4	.1E-4	.1E-4	.1E-4	.1E-4
	.1E-4	.1E-4	0.0	.03889	.01111	.04928	.02567	.02083	.00972	.03194
	.0217	.01059	.04948	.04809	.0092	.03698	.0045			
Variable minima :	339562E7	49068E7	433468E7	167565E7	-618620.97	232715E7	484163E7	-614111.39	316608E7	189301E7
	-344788.51	-254131.09	-244132.	-244131.98	-244131.98	-199.63396	-199.63371	-113.2292	-113.22932	-113.22833
	-537.78946	-537.78911	-537.78541	-537.7054	-537.80418	-537.70841	-165.34287			
Times of minima :	.1E-4	.1E-4	.1E-4	.1E-4	.1E-4	.1E-4	.2E-4	.2E-4	.2E-4	.2E-4
	.02429	.4E-4	.025	.01389	.03611	.02428	.67E-3	.04583	.03472	.00694
	.0467	.03559	.02448	.02309	.52E-3	.01198	.0295			

Comment ca	ırd.							
Comment ca	ırd.			Itl				
Comment ca	Comment card.							
Fourier se	Fourier series started. NFOUR = 30 FOURIER ON							
» Plot car	:d. 5.000E*00	.340E*01 3.000E+01	1945. 13.430.0	FONT-AREAT-A				
Begin the	Fourier series con	mputation using 1660	equidistant points.	The first two points, followed	by the last two, are			
-9.99342041	l01562500E+0I -l	.0003638458251953E*02	-9.8807937622070313E+01	-9.8957008361816406E*01	•			
Coefficien	ts of the resultar	t Fourier series follo	ow. "Complex amplitude	e' is the square root of the sum	of the squares of the			
cosine and	the sine coeffici	ents. "Fraction of	fundamental" applies t	to this amplitude.				
Harmonic	Cosii	1e Sine	Complex	Fraction of				
number	coefficien	t coefficient	amplitude	fundamental				
0	3.98805806954E-0	1 0.0000000000E+00	3.98805806954E-01	0.003672777				
1	-1.02553647043E+0	2 3.56831867397E+01	1.08584254557E+02	1.00000000				
2	-3.00097146550E-0	1 1.95066030061E-01	3.57923250784E-01	0.003296272				
3	-1.30375004948E-0	1 1.16004064755E-01	1.74512420632E-01	0.001607161				
4	-8.47123264295E-0	2 8.85859995225E-02	1.22571030674E-01	0.001128810				
S	-6.93007632679E-0	2 5.31078349326E-02	8.73100104269E-02	0.000804076				
6	-6.17257541942E-0	2 7.05457776684E-02	9.37378017540E-02	0.000863273				
7	-7.20877257429E-0	2 5.95903288056E-02	9.35288591289E-02	0.000861348				
a	-7.09997507223E-0	2 7.50251527506E-02	1.03294424573E-01	0.000951284				
9	-9.35366875252E-0	2 8.94729852768E-02	1.29439279230E-01	0,001192063				
10	-1.67832699367E-0	1 1.36192852056E-01	2.16139556602E-01	0.001990524				
11	3.07113573151E+0	0 -1.63884258338E+00	3.4B104577598M0	0.032058477				
12	8.07035824231E-0	2 4.76418522993E-02	9.37166703764E-02	0.000863078				
13	8.08034701260E-0	1 -1.74162172831E+00	1.93993914564E+00	0.017681561				
14	7.56000084549E-0	2 -8.60510937904E-02	1.14543232104E-01	0.001054879				
15	4.82091567287E-0	2 -3.82791768213E-02	6.15582502238E-02	0.000566917				
lb	3.59928446598E-0	2 -1.94434712969E-02	4.09088430878E-02	0.000376747				
17	2.44733542635E-0	2 -1.15641975149E-02	2.70679835428E-02	0.000249281				
18	2.39434810860E-0	2 8.55531988390E-04	2.39587608506E-02	0.000220647				
19	1.66819892548E-0	2 9.03916659966E-03	1.89735420603E-02	0.000174736				
20	1.74954918825E-0	2 1.93751780156E-02	2.61053588243E-02	0.000240416				
21	1.37015446205E-0	2 3.64664735748E-02	3.89555646855E-02	0.000358759				
22	5.25888627295E-0	3 8.35457513815E-02	8.37111011678E-02	0.000770932				
23	2.02928414028E-0	1 -7.48850839239E-01	7.75859214451E-01	0.007145228				
24	5.11983536889E-0	2 -2.21007802783E-02	5.57648268120E-02	0.000513563				
25	-1.67293346132E-0	1 -4.67669868561E-01	4.96691221606E-01	0.004574247				
26	3.01394590406E-0	3 -6.53909312866E-02	6.54603526148E-02	0.000602853				
27	1.03509369542E-0	2 -4.09018194240E-02	4.21912399441E-02	0.000388558				
28	1.27785585366E-0	2 -2.97821620497E-02	3.24078498921E-02	0.000298458				
29	1.10077365190E-0	2 -2.21607908976E-02	2.47441087227E-02	0.000227879				

Derived from table: 1) RMS value = 7.68364297E+01 2) THD = 5.79429617H0 % Summary statistics RMS and THD of the preceding line nowwill be explained briefly this one time only (the present explanation will not be repeated). RMS and THD are acronyms for the Root Mean Square (or effective) value and the Total Harmonic Distortion, respectively. Each of these two statistics is produced by taking the square root of the sum of the squares of printed entries only. For THD, the column labeled "Fraction of fundamental" is used, but the first two rows are ignored, and the result is multiplied by 100 to convert per unit to percent. For RMS, every entry of the "Complex amplitude' column is used, and the result is divided by the square root of 2.

152

- Potência característica

Outro parâmetro normalmente referenciado em linhas de transmissão é a potência característica Pc, dada por:

$$Pc = \frac{V^2}{Zc}$$

onde V é a tensão nominal da linha.

Esta potência característica corresponde ao nível de potência transportada pela linha onde a potência reativa consumida na indutância série L iguala a potência reativa gerada pela capacitância em derivação C da linha. Assim não há queda de tensão na linha (desprezando-se a resistência série R).

A tabela 2.1, a seguir, apresenta os parâmetros de algumas linhas de transmissão em alta tensão típicas:

Car	acterísticas da	Linha	Parâme S	etros Distr eq. Positiv	Zc (*)	\y\(*)	
Tensão	Condutores por Fase	Espaçamento entre Fases	R (Q / km)	X (Q/km	C (nF/km)	(0)	(l/km)
138 kV	1x336.4 MCM	3.80 m	0.172	0.50	8.77	389	0.00129
230 kV	1x636 MCM	8.00m	0.093	0.52	8.60	400	0.00130
345 kV	2x954 MCM	8.40 m	0.031	0.37	11.93	287	0.00129
500 kV	4x954 MCM	10.6 m	0.016	0.32	13.83	248	0.00129

(*) Valores obtidos desprezando-se a resistência da linha

Tabela 2.1

Nota-se que, embora os parâmetros distribuídos e a impedância característica sejam bastante distintos para as linhas de diferentes tensões, a constante de propagação é praticamente a mesma.

2.2.2 Modelo Básico de uma Linha de Transmissão

Partindo-se das equações (2.7) vamos explicitar a tensão e corrente no fim de linha em termos da tensão e corrente no início de linha. Assim:

$$a = 0$$
 $K(0) = Vi$ e $/(O) = //$

x = t -> v(e) = vf e ik) = if

Logo:

$$Vi = V_{i+}V_2$$
 e $Vf = V_{x}e^{rt} + V_{2}e^{rt}$

Determinando-se as constantes $V^{\wedge}eV_{2}$ das equações do início de linha, tem-se:

Vi + Zcli	•	Vi-Zell
z	° 2	=

Substituindo-se nas equações de fim de linha, resulta:

$$Vf = Vi$$
 - $Zc \ li$ = $Vi \ Cosh \ yt$ - $Zc \ ti \ Senh \ yt$

Analogamente, pode-se determinar a tensão e corrente do início de linha em termos da tensão e corrente do fim de linha, que resulta:

Vi= Vf Cosh yt + Zc If Senh yt

$$// = // Cosh yt + -+-Senh yt$$

Z.c

(2-9)

Esta equações podem ser muito úteis na resolução de problemas de sistemas de potência envolvendo linhas longas.

Além disto, a conversão das equações de linha (2.7) em um circuito equivalente facilita de sobremaneira as aplicações práticas usuais. Conforme [22] esta conversão resulta no circuito equivalente da Fig. 2.4, a seguir:

$$Z_{L}=R_{L}+jX_{L} = e(R + ja)L) \frac{Senh \ y \ l}{y \ 9}.$$

$$Y_{\iota} = i(j\omega C) \frac{Tgh \frac{\gamma \ell}{2}}{yi}$$

Onde:

- R: resistência distribuída de sequência positiva (circuitos equilibrados);
- L: indutância distribuída de sequência positiva (circuitos equilibrados);
- C: capacitância distribuída de sequência positiva (circuitos equilibrados);
- ZL: Impedância série equivalente da linha;
- Ri,: Resistência série equivalente da linha;
- X_L: Reatância série equivalente da linha;
- YL: Admitância paralela equivalente da linha;
- y: Constante de propagação da linha.

Este circuito equivalente é uma representação exata da linha de transmissão em regime equilibrado e para uma frequência constante. Note-se que os termos Z_{L} e Y_{L} correspondem às impedâncias e admitâncias nominais da linha, ou seja, os parâmetros distribuídos, multiplicados pelo comprimento da linha e pelos termos de correção.

De forma geral, para linhas de comprimento pequeno ou médio, isto é, para comprimentos muito menores do que um quarto do comprimento de onda, pode-se desprezar praticamente as correções dos termos em *Senh* e *Tgh*, ficando os parâmetros R|., X_{L} e Yj. proporcionais ao comprimento da linha, ou seja, iguais às impedância e admitância nominais da linha. No entanto, para linhas longas o efeito dos termos em *Senh* (módulo menor que 1.0) e em *Tgh* (módulo maior que 1.0) é diminuir a impedância série c aumentar a admitância paralela da linha. Em termos práticos é comum aplicar estes termos de correção apenas em linhas de extensões superiores a 100 km.

2.2.3 Sistema de Transmissão Radial Típico

Para a análise do controle de tensão em linhas longas, consideremos um sistema de transmissão radial, composto por uma usina geradora, uma subestação elevadora, uma linha de transmissão longa, uma subestação abaixadora e uma carga, conforme diagrama unifilar apresentado na Fig. 2.5, a seguir:

777777

Fig. 2.5

O circuito de sequência positiva equivalente deste sistema, em por unidade, considerando o modelo básico da linha apresentado no subitem anterior é mostrado na Fig. 2.6, a seguir:

Fig. 2.6

Onde:

req, xeq: Resistência e reatância equivalentes correspondente ao gerador e transformador elevador.

^RL, ^xL ^e y/2: Parâmetros do modelo básico da linha,

- vg: Tensão nos terminais do gerador,
- vi: Tensão no início de linha,
- vf: Tensão no fim de linha.

Neste circuito equivalente outro parâmetro importante é o módulo da potência de curto circuito no início da linha, definida por:

$$Pcc=, {MVA}$$

$$^{Recy^{2}} + Xeq^{i}$$

Onde:

Vg: Tensão de linha (kV)

Req, Xeq: Resistência e reatância equivalente do gerador e transformador elevador (Cl),

2.2.4 Sistema de Transmissão em Vazio

lím sistema de transmissão diz-se estar em vazio quando não há nenhuma carga ativa sendo alimentada por ele. Esta condição de operação ocorre quando o sistema está sendo energizado, recomposto ou logo após uma rejeição total da carga. Geralmente estas condições provocam sobretensões sustentadas, devido ao fenômeno conhecido por *Efeito Ferranti*^ isto é, devido ao fluxo de corrente capacitiva através da indutância da linha. Por esta razão é comum em sistemas radiais longos a instalação de um reator em derivação no fim de linha, para compensar o reativo gerado pela mesma e reduzir a sobretensão sustentada nesta situação.

Vamos analisar neste subitem a tensão resultante no fim de uma linha de transmissão em vazio, com ou sem reator em derivação, considerando a mesma energizada por uma fonte de tensão ideal (Pcc da fonte infinita) ou não.

• Linha energizada através de uma fonte de Pcc infinita:

Neste caso determinemos a relação entre as tensões de fim e início de linha, denominada de regulação da linha.

- Sem reator em derivação no final de linha:

Consideremos o circuito equivalente do subitem 2.2.2, sem a carga conectada no final de linha. Desprezando as perdas ativas do sistema, ou seja, desprezando-se as resistências, e fazendo-se a corrente no final igual a zero na equação (2.9), tem-se:

 $\begin{array}{ccc} Vf & 1 \\ Vi & Cosh \ y \ t \end{array}$

(2.10)

Mas

r = j (o yfTc

(osh y) = C'as (o JTC f. = (os J3C)

Onde:

P = COJlc

Portanto:

$$Vi \quad Cos \ pt \tag{2.11}$$

- Com reator em derivação no final da linha

1

Considerando agora a presença de uma compensação dada por um reator de reatância Xr instalado no final da linha, podemos determinar a regulação através da mesma equação (2.9) da seguinte forma:

$$Cosh r^* + \frac{1}{j Xr} Senh y l$$

Mas

Senh yi = j Sen Pi

Logo,

Vf J Xr

$$Vf = Vi \ Coshyt + Zc \frac{Vf}{j \ Xr} \ Senhyt$$

$$Vi \quad Cos \ pi + \frac{1}{Xr} \ Sen \ Bt \quad Cos \ pi \ + \ \frac{1}{Kr} \ Sen \ \frac{1}{Kr} \ Cos \ pi \ + \ \frac{1}{Xr} \ Cos \ pi \ + \ \frac{1}{Xr} \ collCi \ Sen \ fie$$

Mas

KL

 $Xr \ co \ Cf.$ $V^2 \ co \ Ci \ Qc$

Onde:

Qr: Potência reativa absorvida pelo reator

Qc: Potência reativa gerada pela capacitância da linha

V: Tensão da linha

Kc: Grau de compensação da linha

Logo:

$$Vf = 1$$

$$Vi \quad Cos pi + Kc Pi Sen fii$$
(2.12)

A fim de ilustrar o resultado destas expressões, consideremos os casos das linhas de transmissão de extra alta tensão relacionadas no item 2.2.1 com |y| igual a 0.0013 km¹¹. A Fig. 2.7, a seguir, apresenta a regulação de tensão de uma linha em função do seu comprimento e do seu grau de compensação.

Nota-se que se considerarmos a tensão no início da linha o valor de 1.0 pu e no final da linha níveis máximos da ordem de 1.0 a 1.05 pu, o comprimento máximo da linha sem que seja necessária compensação reativa deve ser inferior a 250 km. Utilizando 20 % de compensação este comprimento sobe para em torno de 310 km. No entanto, dependendo da potência de curto do sistema alimentador pode ser difícil se conseguir uma tensão de 1.0 pu no início da linha. Em consequência estes comprimentos máximos sem que seja necessária compensação pode sofrer uma significativa redução.

Outra observação interessante é que níveis de compensação acima de 50% produzem uma regulação de tensão negativa, ou seja, a tensão no final de linha é inferior a do início, mesmo a linha estando em vazio.

Linha energizada através de uma fonte de Pcc finita:

I

Consideremos agora a situação de uma linha alimentada através de um sistema com um determinado nível de Pcc na fonte, dado pela reatância equivalente **Xeq.** Neste caso

calcularemos a relação entre a tensão no final da linha e a tensão na barra da geração, isto é, a tensão da fonte.

- Sem reator no final da linha

Neste caso tem-se:

 $\begin{array}{ccc} Mas & YL & - \\ Vg & 1 & + \frac{j & x & e^{-a}}{Zi} \end{array}$

$$De \quad (2.9) \qquad \begin{array}{c} Vi \\ -^{\wedge} \\ li \end{array} = \mathbf{Z}c\mathbf{T}ghyt$$

ti

Assim, resulta:

$$VJ_{_} 1 1 1$$

$$Vg = Cosh_{t_{i+}} JX \ll 1 = 1$$

$$Zc Tgh yt Zc$$

$$^{\wedge} Cos \quad fit-\stackrel{\wedge}{Zc} Sen fit \quad Cos \quad fit \stackrel{Pcl}{\underbrace{fit-Sen fit}} Sen fit \qquad (2.13)$$

Onde:

Pcc: Potência de curto circuito da fonte

Pcl: Potência característica da linha

- Com reator no final da linha

Adotando-se o mesmo procedimento do caso anterior, tem-se:

$$Vf_Vf_Vi_$$

$$Vg " Vi Vg$$

$$Mas = Vg JJ*l$$

$$Zi$$

Onde
$$Zi = li$$

$$\overset{\wedge}{De} \overset{\text{m a x}}{(2.9)} \overset{Vi}{-r} \overset{j Xr \ Cosh \ y \ \pounds}{-r} + \overset{Zc \ Senh \ y \ f}{\underbrace{Coshyt} + j - \underbrace{Senhyl}_{Zc} }$$

$$Vi_ \quad . \quad \underline{XrCos\beta i + Zc \; Sen\beta t}$$

$$^{\nu} \qquad Cos\beta \; t - -Sen\beta t$$

$$Zc$$

Logo:

$$Vg$$
 j. $Xe < i$ Z_cCos βt - Xr Sen βt
Zc Xr Cos βt + Zc Sen βt

De (2.12), resulta:

Vf

$$\land$$
 C Vav βt + — Sen βt + \land (— Gw # - Sen βt

Ate
$$\frac{*7 \cdot}{Xr} = Kc \beta t$$

Logo:

Como ilustração dos resultados destas expressões, consideremos os casos das linhas de transmissão de extra alta tensão relacionadas no item 2.2.1 com |y| igual a 0.0013 km^{"1}. As Figs. 2.8 e 2.9, a seguir, apresentam a relação *VfjVg* de uma linha em função do seu comprimento, da potência de curto circuito da fonte e do grau de compensação da linha. A Fig. 2.8 corresponde ao caso de linha sem compensação, enquanto a Fig. 2.9 apresenta os resultados para 2 níveis de compensação, 20 % e 40 %.

Fig. 2.8

Destas figuras podemos observar a grande influência da potência de curto-circuito da fonte. Por exemplo, para uma tensão no início da linha de 1.0 pu e no final de 1.05 pu, o comprimento máximo da linha sem compensação reativa é reduzido de 250 km, no caso de potência de curto-circuito infinita, para níveis da ordem de 80 km e 50 km, quando a potência de curto-circuito do sistema for respectivamente inferior a 2.5 e 1.67 vezes a potência característica da linha, conforme pode ser observado da Fig. 2.8. Considerando agora um grau de compensação da linha de 40 %, estes comprimentos sobem para em torno de 100 km e 150 km respectivamente, conforme se observa da Fig. 2.9.

2.2.5 Sistema de Transmissão com Carga

Consideremos agora o caso de uma linha de transmissão alimentando uma determinada carga, conforme mostra a Fig. 2.10, a seguir:

Dependendo do nível da carga sendo alimentada e do seu fator de potência poderá ocorrer um abaixamento indesejável da tensão do final de linha, devido a queda de tensão reativa na linha, conforme apresentado no item 2.1. Por esta razão é comum em sistemas radiais longos a instalação de capacitores em derivação junto à carga, para compensar o seu fator de potência e, assim, obter uma melhor regulação de tensão. Alternativamente outras alternativas de compensação podem ser empregadas, tais como: compensadores síncronos ou estáticos, reatores saturados, capacitores série etc.

Vamos analisar neste subitem a relação entre as tensões de fim (carga) e início de linha, denominada de regulação da linha, considerando a linha de transmissão conectada a uma fonte de tensão ideal (Pcc da fonte infinita) e desprezando-se sua resistência série.

A impedância do final da linha é dada por:

 $Jf = \int JXc = \Lambda Rc^2 + Xc^2 \qquad Z(p = ZfZcp)$

Esta impedância de fim de linha é o equivalente das seguintes impedâncias (todas em paralelo):

- Impedância da carga propriamente dita;
- Reatâncias dos equipamentos de compensação reativa:
 - . Eventual reator em derivação no final de linha;
 - . Eventual banco de capacitor em derivação para correção do fator de potência da carga.

Da equação (2.9), tem-se:

$$= Cos pt + Zc \qquad j Sen pi = Cos fit + \frac{z \bullet}{Zf} j Sen pt$$

Logo:

$$Vi' Cos fie + j \frac{Zc}{ZfZc} Sen fit$$

Obtendo-se o módulo e o ângulo desta expressão complexa, tem-se:

$$VJ_{-} Vf_{Vi} Z.6$$

$$Vi Vi Vi$$

$$Vi Cos fie + Sen fie Zc_{-}Sen < pj + \frac{i}{-}Cos < p Sen fie$$

$$(2.15)$$

A potência entregue na carga é dada por:

$$S = Vf jf' = Vf\%- = -JL$$

Z' Zf Z-cp Zf

A fim de ilustrar o resultado destas expressões, consideremos os casos das linhas de transmissão de extra alta tensão relacionadas no item 2.2.1 com |y| igual a 0.0013 km["]. As Figs. 2.11 a 2.13, a seguir, apresentam a regulação de tensão de uma linha de 100 km, 300 km e 500 km respectivamente, em função do nível da impedância Zf e do seu fator de potência. A Fig. 2.14 apresenta a regulação de tensão em função do comprimento da linha e do fator de potência da carga, para dois níveis de carga: igual a impedância característica Zc e igual o dobro da mesma.

Fig. 2.14

As seguintes conclusões podem ser obtidas a partir destas figuras:

- A regulação da linha torna-se pior quando o comprimento da linha ou o nível de carga da mesma aumenta. Também quanto menor for o fator de potência indutivo da carga, pior será a regulação da linha.
- Para uma carga resistiva de valor igual à impedância característica da linha a regulação é sempre unitária (Vf = Vi), independente do comprimento da linha, conforme mostra a Fig. 2.14.
- Estabelecendo-se uma variação máxima de 5% para as tensões de início e fim de linha, isto é, Vf / Vi igual a 0.95, a tabela 2.2, a seguir, apresenta os comprimentos máximos de linha para transmitir uma carga de nível igual a uma ou duas vezes a impedância característica da linha:

Fator de Potência da Carga	Comprimento Máximo de Linha para Vf/Vi >0.95				
	Módulo da Carga = Zc	Módulo da Carga = 2 Zc			
1.00		146			
0.95 Indutivo	136	57			
0.90 Indutivo	97	44			
0.85 Indutivo	80	37			

Tabela 2.2

2.3 Requisitos Para o Controle de Tensão em Linhas

Conforme visto no item anterior, um sistema de transmissão radial longo, sem qualquer equipamento de compensação reativa, pode apresentar grandes variações da tensão na barra de carga, isto é, uma regulação de tensão inaceitável, em função das suas características (comprimento da linha, potência de curto-circuito da fonte alimentadora) e de sua condição de operação (nível da impedância de carga e do seu fator de potência). De forma a prover uma regulação de tensão adequada é necessária a implantação de equipamentos de controle/suporte de tensão e de compensação reativa da carga. Tais equipamentos, juntamente com os controles das máquinas síncronas do sistema, são os responsáveis por atender os requisitos necessários de controle de tensão do sistema.

Alguns requisitos para o controle de tensão de um sistema de transmissão são geralmente estabelecidos em normas nacionais de planejamento e operação de sistemas elétricos ou em critérios de projeto e operação das empresas concessionárias. Para um sistema de transmissão radial em extra alta tensão, os principais requisitos são:

- Condição de energização e recomposição do sistema:

Quando o sistema está sendo energizado ou recomposto, deseja-se tomar a carga no final da linha no menor período de tempo possível. Os passos seguidos neste processo, a partir da barra alimentadora, são os seguintes:

- . Energização da linha;
- . Energização do transformador abaixador no final da linha;
- . Tomada de carga.

Durante este processo, os níveis das tensões nas barras do sistema, tanto em regime permanente como transitório, deverão ficar abaixo de níveis seguros para os equipamentos e carga. Além disto os fenômenos transitórios devem ser suficientemente amortecidos.

Em termos de regime permanente tem-se considerado, geralmente, os seguintes limites de tensão:

- . Tensão máxima no final de linha antes de energizar o transformador: 1.10 pu da tensão nominal do transformador.
- . Tensão máxima na barra de carga após tomada da mesma: 1.05 pu da tensão nominal do sistema.

Em termos de regime transitório analisa-se, geralmente, as seguintes situações:

- . Energização e religamento transitório da linha de transmissão com e sem defeito;
- . Energização transitória do transformador abaixador.

Com relação à energização e religamento da linha procura-se verificar os seguintes aspectos:

. Níveis máximos de sobretensão transitória na linha. Estes devem estar compatíveis com os níveis de isolamento da linha de transmissão, ou seja, o risco de falha da linha deve ser inferior aos valores definidos no projeto da mesma.

. Níveis de energia dissipada nos pára-raios do final de linha, que devem estar dentro da capacidade dos mesmos.

Com relação à energização do transformador procura-se verificar os seguintes aspectos:

- . Níveis máximos de sobretensão, que devem estar abaixo do limite de sobreexcitação especificado para o transformador.
- . Níveis máximos das sobretensões transitórias de longa duração, que devem estar abaixo da capacidade máxima dos pára-raios de final de linha em suportar sobretensões temporárias.
- . Nível máximo da corrente inrush do transformador deve estar abaixo do nível de atuação da proteção do mesmo.
- Condição normal de operação do sistema:

Quando o sistema está operando normalmente, isto é, transmitindo uma determinada potência elétrica das fontes geradoras até os consumidores, que é variável ao longo do dia, dependendo das cargas conectadas, deve-se geralmente observar limites em regime permanente, temporário e transitório.

Em termos de regime permanente, é possível distinguir alguns tipos de barras do sistema, com diferentes requisitos. Para barras de alta tensão onde existam carga diretamente conectadas ou transformadores abaixadores tem-se :

- . Nível mínimo de tensão: 0.95 pu da tensão nominal do sistema.
- . Nível máximo de tensão: 1.05 pu da tensão nominal do sistema.
- . Variação máxima de tensão devido a manobra de equipamentos de compensação reativa: 0.05 a 0.1 pu, respeitando os limites anteriores.

Em termos de regime temporário analisa-se, geralmente, situações de rejeição parcial ou total de carga. Nestes casos não deve haver ocorrência de auto-excitação das máquinas, bem como a sobretensão dinâmica resultante máxima deve ser inferior a níveis de 1.4 a 1.5 pu. Além disto, após a manobra de equipamentos de compensação reativa e a comutação de tapes, sob carga, de transformadores com este dispositivo a tensão deve retornar aos patamares de regime permanente.

Em termos de regime transitório analisa-se, geralmente, situações de rejeição de carga e ocorrência de defeitos no sistema, onde as sobretensões transitórias máximas devem resultar compatíveis com o isolamento da linha e equipamentos, bem como a energia dissipada máxima nos pára-raios devem ser inferiores às capacidades dos mesmos.

Além de prover o controle da tensão em regime permanente, dinâmico e transitório, a compensação reativa em sistemas de potência é um processo importante e necessário, contribuindo também para:

- Melhoria da estabilidade transitória e dinâmica das máquinas;
- Redução de perdas;
- Evitar sobrecargas térmicas desnecessárias;
- Melhorar a qualidade de potência, mitigando, por exemplo, flutuações de tensão, harmônicas etc.

2.4 Principais Técnicas de Controle de Tensão cm Sistemas de Transmissão

Neste item serão relacionados e sucintamente descritos os principais equipamentos compensadores de potência reativa que têm sido utilizados como controle/suporte de tensão em sistemas de transmissão, particularmente em sistemas de transmissão a longa distância.

2.4.1 Reatores e Capacitores em Derivação

Foi a primeira técnica utilizada na compensação reativa e que permanece em uso até o presente, haja vista sua simplicidade de instalação, operação e manutenção, sua confiabilidade e, particularmente, seu baixo custo, principalmente quando se trata de sistema radiais.

Nos casos em que esquemas de reatores e capacitores, fixos ou manobráveis, possam ser usados para atender os requisitos de controle de tensão, provavelmente resultará na medida disponível mais econômica de compensação reativa [10].

Esta técnica consiste basicamente na instalação de bancos de reatores e capacitores em derivação, manobráveis ou não, em barras específicas do sistema, de forma a preencher os requisitos básicos de controle de tensão do sistema, conforme relacionado no item 2.3. Um exemplo típico da aplicação desta técnica em um sistema radial é apresentado na Fig. 2.15, a seguir:

Fig. 2.15

Neste exemplo, tem-se a seguinte estratégia de compensação reativa:

- Instalação de um reator em derivação, manobrável ou não, no final de linha, de potência nominal suficiente para manter o nível de tensão adequado com o sistema em vazio, ou seja, sem carga, respeitando, assim, os requisitos para a energização da linha, do transformador e para o regime permanente após uma rejeição total de carga.
- Instalação de bancos de capacitores em derivação, manobráveis, na barra de carga, em número e potência nominal estabelecidos de forma a manter um nível adequado de tensão para os vários patamares de carga do sistema, desde a mínima até a máxima.

E importante ressaltar os seguintes aspectos decorrentes desta estratégia:

- O sistema de controle para manobra dos bancos de capacitores deve compreender lógicas para conexão e desconexão dos mesmos, de forma que o nível de tensão se mantenha sempre na faixa de 0.95 a 1.05 pu. Assim, não se tem um controle contínuo da tensão na barra de carga, mas sim discreto, cujo passo depende da potência nominal dos bancos de capacitores.
- Quando o reator do ílnal da linha é manobrável, ele permanece conectado apenas para permitir a energização da linha ou do transformador e, eventualmente ajudar no controle de tensão em condições de carga mínima, sendo desconectado em condições de carga intermediária e pesada.

Com isto c possível se obter uma economia razoável em termos de bancos de capacitores, pois não há, neste caso, a necessidade de se compensar a potência reativa consumida pelo reator. No entanto para que esta estratégia seja possível deve-se verificar se a condição de rejeição pareial ou total de carga, sem o reator, passa pelos critérios de tensão, o que geralmente não acontece. Assim, neste tipo de sistema ou o reator não é manobrável ou se tem algum outro equipamento de controle de tensão para cobrir a condição de rejeição de carga.

2.4.2 Compensadores Síncronos (CS's) [03], [10]

Os compensadores síncronos (CS) foram, por longo tempo, a técnica de compensação reativa utilizada quando era necessário um controle contínuo e fino de tensão, tendo sido usado principalmente em subestações receptoras ou intermediárias de sistemas de transmissão longos, em subestações inversoras de sistemas em corrente contínua etc.

Os compensadores síncronos são basicamente máquinas síncronas rotativas e por isto sua tensão nominal é inferior a 20 kV. Assim, estes compensadores devem ser conectados ao sistema de transmissão através de um transformador abaixador, ou através dos enrolamentos terciários de autotransformadores. São fabricados em unidades de até 300 MVA para instalação abrigada ou não. Requisitos suplementares de projeto devem incluir o sistema de partida e manobra, de resfriamento e de excitação.

Os CS's exercem uma ação inerente de controle de tensão porque sua reatância transitória fica em paralelo com a impedância equivalente do sistema, vista da barra onde ele se encontra instalado, produzindo um efeito similar a de se aumentar a potência de curto-circuito da fonte, conforme pode ser visto na Fig. 21.6, a seguir:

Fig. 2.16

A inércia dos CS*s têm efeitos transitórios similares a outras máquinas síncronas, o que pode ser benéfico na estabilidade transitória dos sistemas e para ajudar a manter transitoriamente a referência de tensão e frequência em eventuais ilhamentos do sistema. A alta velocidade de controle da excitação da máquina, conseguida através de um regulador automático de tensão, permite constantes de tempo efetivas da ordem de 400 ms no controle de tensão do sistema. A capacidade contínua de absorção de potência reativa é usualmente limitada à faixa de 0.5 a 0.7 da potência nominal. Alguma capacidade transitória de absorção pode ser obtida através de requisitos especiais de projeto da máquina, porém tornando-se efetiva somente após a constante de tempo de 400 ms [03].

Atualmente novas instalações empregando CS's como meio de compensação reativa tem sido muito pouco frequentes, principalmente depois do advento dos compensadores estáticos, devido a benefícios em custo, desempenho, confiabilidade e manutenção destes últimos.

2.4.3 Compensadores Estáticos (CE's) [03], [10]

Os CE's são equipamentos de compensação reativa que tem a ação de controle contínua e que empregam uma das seguintes tecnologias:

- Compensador com reatores auto-saturados:

Os compensadores com reatores auto-saturados são empregados em sistemas CA desde 1964, tendo inicialmente seu uso sido predominante em sistemas industriais. Atualmente tem sido pouco utilizado, em virtude do advento e desenvolvimento dos compensadores controlados por tiristor.

Os compensadores com reatores auto-saturados empregam reatores multi-núcleos (6 ou 9 núcleos), compensados harmonicamente através da própria conexão de seus enrolamentos, bem como pela incorporação de enrolamentos secundários ligados em delta fechado. Os reatores saturados têm núcleo de aço, enrolamentos e tanque com óleo do tipo dos transformadores convencionais. Tais reatores tem sido construídos com tensão nominal de até 69 kV.

A Fig. 2.17, a seguir, ilustra um compensador estático típico com reatores auto-saturados, bem como sua característica em regime permanente.

O transformador abaixador é do tipo com comutação sob carga para ajustar a tensão do reator para qualquer tensão do sistema dentro da faixa nominal de variação $(\pm 5\%)$, mantendo o reator operando saturado e, portanto, com a característica da Fig. 2.17b.

A incorporação de capacitores para correção de inclinação permite que se obtenha uma inclinação efetiva na faixa de 3 a 5% na base nominal. Circuitos amortecedores são, neste caso, necessários para evitar instabilidade sub-síncrona devido a interação do capacitor com o reator saturado.

Os reatores saturados têm uma capacidade de sobrecarga inerente e imediata no modo de absorção de reativo. Sua resposta é quase instantânea resulta da ausência de ângulos de disparo e sistemas de controle e do nível da reatáncia equivalente.

Os compensadores com reatores saturados têm as seguintes vantagens em relação aos demais equipamentos de compensação reativa: alta capacidade de sobrecarga, alta velocidade de ação, alta confiabilidade, baixa necessidade de manutenção e facilidade de instalação. No capítulo 3 será tratado com mais detalhes os reatores auto-saturados.

- Compensadores controláveis a tiristor:

Em meados de 1974 os compensadores estáticos controlados por tiristor tornaram-se um equipamento bem estabelecido em redes industriais, principalmente na redução de flutuações de tensão causadas pela operação de fornos a arco. Nos sistemas de transmissão começou ser utilizado no final da década de 70, tendo a partir daí seu emprego proliferado.

A Fig. 2.18 apresenta os dois tipos básicos destes compensadores, isto é, reatores controlados por tiristores (Fig. 2.18a) e capacitores chaveados por tiristores (Fig. 2.18b).

(a) Reator Controlado por Tiristor

(b) Capacitor Chaveado por Tiristor

Os compensadores estáticos com reatores controlados por tiristor compreendem basicamente um reatores lineares em série com válvulas tiristoras de alta tensão. Os tiristores são conectados em "back-to-back" para permitir fluxo de corrente bidirecional em cada fase. Assim a corrente no reator pode ser controlada ajustando o ângulo de disparo dos tiristores em cada semi-ciclo desde 90° (condução completa) até 180° (sem condução).

De forma a se ter um projeto otimizado economicamente, o conjunto reator / válvulas tiristoras são conectados à alta tensão através de um transformador abaixador. Compensadores de baixa potência nominal podem ser conectados em uma única ligação cm delta, com operação em 6 pulsos, requerendo geralmente filtros de harmônicas pelo menos de ordem 5 e 7. Compensadores de potência mais elevada são geralmente conectados em duplo delta, com operação em 12 pulsos, requerendo filtros de harmônicas de pelo menos ordem 11 e 13. As válvulas tiristoras são geralmente abrigadas e possuem um sistema de resfriamento, a ar ou água, relativamente complexo. Também há necessidade de um sistema de controle para o disparo dos tiristores e o consequente controle de tensão.

Os compensadores com reator controlado por tiristor não apresenta capacidade inerente de sobrecarga como os compensadores com reatores saturados.

As principais vantagens de um compensador com reator controlado por tiristor são: velocidade elevada de resposta, baixas perdas, geração reduzida de harmônicas e custo.

Os compensadores estáticos com capacitores chaveados por tiristor permitem o controle dos capacitores somente pela ação de chaveamento liga/desliga, não sendo possível um controle contínuo do ângulo de disparo, pois, ao contrário dos reatores, os capacitores produzem uma corrente transitória muito elevada, a menos que sejam manobrados quando a tensão for zero. Assim, tais compensadores fornecem essencialmente uma forma de controle da potência reativa em degraus. Sua velocidade de resposta chega a níveis de até 1 ciclo, para o chaveamento, mais o período de tempo do circuito de controle e decisão. De forma a evitar instabilidade no controle é necessário estabelecer no sistema de controle uma banda morta de operação.

As principais aplicações de compensadores estáticos em sistemas de transmissão são:

- Controle de tensão e regime permanente;
- Redução de sobretensões temporárias, devido a rejeições de carga e ocorrência de defeito;
- Prevenção de instabilidade de tensão;
- Melhoria no amortecimento de oscilações eletromecânicas do sistema.
- 2.4.4 Compensação Série [17]

A compensação série é o uso de bancos de capacitores ligados em série com uma linha de transmissão para compensar a sua reatância indutiva, conforme ilustra a Fig. 2.19, a seguir:

Linha de Transmissão

Fig. 2.19

As principais razões para incorporar um capacitor série em um sistema de transmissão são:

- Aumentar a capacidade de transmissão de potência e melhorar a estabilidade do sistema, já que ela reduz a reatância da linha;
- Melhorar a regulação de tensão e o balanço da potência reativa, pois o capacitor série aumenta sua potência reativa instantaneamente e automaticamente em função da carga da linha, sendo, portanto, um equipamento auto-regulado;
- Melhorar/controlar a divisão do fluxo de potência entre linhas de transmissão paralelas, que é governada pelas reatâncias efetivas das mesmas;

- Reduzir as perdas no sistema.

Em termos de localização tem sido comum instalar bancos de capacitores série nas extremidades ou ao longo de linhas de transmissão, tendo cada caso suas vantagens e desvantagens em termos de proteção de linha e dispositivos de proteção do banco.

Para proteção do banco contra sobretensões e sobrecorrentes utiliza-se esquemas protetores baseados em ruptura do isolamento de "gaps" em paralelo com o banco ou em descargas de resistores não lineares de ZnO, conforme mostra a Fig. 2.20, a seguir:

2.4.5 Outras Técnicas

Mais recentemente novas técnicas de compensação reativa e controle de tensão têm sido desenvolvidas e implementadas nos sistemas de transmissão, objetivando um menor gasto com a compensação reativa e/ou maior utilização dos recursos do próprio sistema de transmissão. Dentre estas técnicas, destacam-se as seguintes:

- Utilização de pára-raios de óxido metálico (ZnO) para controle das sobretensões temporárias em conjunto com manobras super rápidas de linha [20]. Esta técnica tem por objetivo permitir manobrar ou minimizar a instalação de reatores em derivação nas linhas de transmissão para condições de carga máxima, conseguindo, assim, ganhos apreciáveis em equipamentos de suporte de tensão, nesta condição de carga. Para cobrir a situação de rejeição de carga sem os tais reatores, conta-se, então, com a atuação dos pára-raios de ZnO instalados nas extremidades da linha, até que seja efetuada a manobra de abertura da mesma dentro de um período de tempo razoavelmente rápido, de forma a não danificar os equipamentos presentes. Esta manobra deve ser comandada por um sistema de proteção que detecte a ocorrência, informe, via comunicação, os dois terminais da linha e comande a abertura da linha nas suas duas extremidades.
- Utilização de compensação série com incorporação de sistemas de controles que permitem a modificação da capacitància do banco e, portanto, a variação do grau de compensação da linha.

2.5 A Ideia de Aplicar Reatores Saturados

Conforme visto no item 2.4.1, a técnica de compensação reativa através da utilização de bancos de reatores e capacitores em derivação foi a primeira e é ainda a mais econômica, embora apresente algumas desvantagens lá mencionadas. A idéia de aplicar reatores saturados é na realidade uma tentativa de otimização desta técnica, mantendo o seu custo atrativo e ampliando suas vantagens. Para um sistema de transmissão radial longo esta proposta consiste no seguinte, conforme ilustra a Fig. 2.21:

- Substituição dos reatores em derivação do final de linha, por reatores auto-saturados básicos conectados diretamente na alta tensão, isto é, sem o transformador abaixador necessário para o compensador estático completo com reatores saturados, descrito no item 2.4.3.
- Minimização e/ou eliminação da instalação de bancos de capacitores em derivação junto as cargas.

A estratégia de operação deste sistema de compensação reativa com reatores saturados é basicamente a seguinte:

- O reator saturado é projetado e ajustado para operar (saturar) a partir de um nível mínimo de tensão na barra, por exemplo entre 0.95 a 1.00 pu;
- Para condições de energização da linha e rejeição de carga, em regime permanente, ele deverá operar no seu limite de absorção em regime (nominal), como se fora um reator linear. Durante o transitório de rejeição de carga pode-se contar com sua capacidade inerente de sobrecarga no modo de absorção de potencia reativa.
- Para condições de carga intermediária à máxima, ele não deve saturar. Assim, é como se fora um reator linear desconectado.
- Para condições de carga mínima à intermediária ele deve operar entre os dois extremos acima, controlando a tensão dentro da sua característica de regime permanente (regulação).

Assim, esta proposição apresenta as principais vantagens de economizar cm equipamentos de suporte de tensão (bancos de capacitores em derivação ou outros) e permitir um controle contínuo da tensão dentro de uma faixa razoável.

Nos capítulos a seguir procurar-se-á detalhar esta proposta, abordando-se para um reator saturado, os seus princípios básicos, a sua modelagem no programa de transitórios eletromagnéticos EMTP-ATP e a sua aplicação em um sistema de transmissão típico.

3. REATOR SATURADO

Neste capítulo trataremos dos conceitos básicos e princípios de funcionamento dos reatores saturados, bem como relacionaremos seus tipos mais usuais.

3.1 Introdução

Historicamente a tecnologia de reatores saturados de múltiplos núcleos foi desenvolvida pelo Dr. E. Friedlander, provavelmente, na década de 40, durante a segunda guerra mundial, com a finalidade principal de ser empregada como multiplicador de frequência e gerador de trens de pulsos, para alimentação da grade de controle em retificadores a válvulas de mercúrio [09], [11], [12].

A habilidade de um reator saturado de múltiplos núcleos em manter sua tensão terminal quase constante só foi aproveitada posteriormente, quando foi desenvolvido, pela GEC (General Electric Company - Inglaterra), durante a década de 50, o primeiro compensador estático com emprego de reatores saturados, baseado na tecnologia de Friedlander. Suas primeiras aplicações comerciais aconteceram na década de 60 para controle de flutuação de tensão, principalmente em industrias siderúrgicas, dada sua rapidez de resposta. Em seguida, ocorreram várias outras aplicações, inclusive em sistemas de transmissão, sendo que uma das mais importantes foi no sistema de transmissão em corrente contínua "Cross Chanel", ligando a Inglaterra à França [06].

A fabricação de compensadores estáticos com reatores saturados pela GEC permaneceu por um período de mais de 30 anos, ao longo dos quais ela forneceu aproximadamente 36 equipamentos deste tipo, para vários tipos de aplicações, quer em sistemas industriais, quer em sistemas de transmissão [01], [02], [23], [24], [25], [26]. A tabela 3.1, que se encontra no final deste capítulo, apresenta a relação destes compensadores. Com o avanço da eletrônica de potência nos últimos anos, a GEC decidiu vender esta tecnologia para um instituto de projeto de aço na China, passando a fabricar apenas compensadores estáticos controlados por tiristor. No entanto, isto não significa que a tecnologia de reatores saturados não seja competitiva ou que não apresente algumas vantagens sobre esta outra. Apenas que está fora de moda! Após os compensadores fornecidos pela GEC, tem-se conhecimento que outros do mesmo tipo foram fabricados e instalados na Austrália, embora não se saiba qual tenha sido o fabricante[18], [21].

No que se refere a utilização de um reator saturado em substituição a um reator convencional de linha de transmissão, conforme exposto no item 2.5 do capítulo 2, não se tem conhecimento de nenhuma aplicação similar.

3.2 O Reator Saturado Elementar

Em princípio um reator saturado pode ser visualizado como um transformador com núcleo de ferro e enrolamentos convencionais, imersos em um tanque com óleo, apenas com enrolamentos primários e operando normalmente com os núcleos saturados. Os núcleos devem ter uma característica similar à mostrada na Fig. 3.1, a seguir, isto é: alta permeabilidade na região não saturada (indutância de magnetização *Lm* alta), permeabilidade baixa e constante na região saturada (indutância de núcleo de ar *Lac* pequena) e joelho bem agudo. Além disto deve apresentar pouca histerese.

A figura 3.2, a seguir, apresenta um reator saturado elementar, com uma característica <jxi do núcleo idealizada.

Fig. 3.2 - Reator Saturado Elementar

Para este circuito tem-se as seguintes equações básicas:

$$\mathbf{v} = \underbrace{Ne}_{di} \underbrace{\frac{d \langle f \rangle}{di}}_{di} = L \cdot \underbrace{\frac{di}{di}}_{di}$$
(3.1)

ftnm = Ne i

Onde:

$$L = Ne$$
 di

fmm: força magnetomotriz no núcleo

Ne: número de espiras

Se ao enrolamento for aplicada uma fonte de corrente ideal e senoidal, de amplitude tal a saturar o núcleo do reator, resultam formas de onda típicas do fluxo e tensão conforme apresentadas na Fig. 3.3, a seguir:

Fundamental

O fluxo ao longo do tempo apresenta forma de onda praticamente trapezoidal, pois:

- Enquanto a corrente tiver valor inferior a *is* o valor do fluxo será proporcional a i. Sendo a indutância de magnetização muito elevada, o valor de *is* é muito pequeno e, assim, a curva senoidal entre zero e *is* pode ser aproximada por uma reta. logo o fluxo também poderá ser aproximado por um segmento de reta entre a +\$s.
- Para níveis de corrente acima de is, o valor do fluxo é igual ao fluxo de saturação 🤹 independente do valor de i.

A tensão ou a força eletromotriz (fem) ao longo do tempo é formada por pulsos (relângulos de largura muito pequena), pois:

- Quando o fluxo for constante e igual a (ls a tensão será nula independente do valor de i, pois d() / dt é nula.

- Na região em que o fluxo for um segmento de reta, isto é, durante o período que ele não está saturado, passando de - $\langle fis a + \langle fis \rangle$ a tensão será constante e igual a:

Vs=Ne^ M

Conforme pode se observar deste princípio a tensão apresenta um valor constante independente do nível de corrente, desde que o núcleo sature. É desta forma que o reator saturado pode servir como equipamento de controle de tensão. O maior inconveniente deste reator saturado elementar é que a forma de onda da tensão seria inaceitável em termos de seu conteúdo harmônico.

O conteúdo harmônico de uma série de pulsos de tensão pode ser avaliado através da decomposição em série de Fourier. Assim, seja a seguinte função periódica de pulsos de tensão:

T / 2

$$/(') = "o + \mathbf{\pounds}", Sen(ncot) + Cos(iuol)$$

(3.2)

$$a_n$$
 - %\f(t) Sen $n \stackrel{2n}{-} t dt$

$$b_n = j f(t) \cos \left(\frac{n}{T} \frac{2n}{T} \right) dt$$

Para o nosso caso, tem-se:

T = 2tt

ao = 0

$$\frac{2 \int_{-\infty}^{0^{2}} \frac{1}{J} \frac{1}{4} \frac{1}{8} \ln \frac{1}{n} \frac{1}{m} \frac{1}{\sqrt{7}} \frac{$$

Logo:

(3.3)

Tomando o termo b como fundamental e expressando os outros termos em relação a este, tem-se:

$$\mathbf{4}_{=} \frac{\mathbf{1}_{\kappa}^{Sen} \frac{(n())}{\kappa 2}}{Sen \left[\frac{1}{2} \right]}$$
(3.4)

A Fig. 3.5, a seguir, apresenta os valores da relação bn / bl para alguns valores de 9.

Fig. **3.5**

Conforme se observa desta figura, a distorção harmônica presente na operação de um reator elementar deste tipo é tão elevada que o torna praticamente inviável. Assim é necessário encontrar uma forma de ligação de núcleos e enrolamentos que produzam um cancelamento, pelo menos parcial, destas harmônicas. Isto será mostrado a seguir.

3.3 Reator Saturado do Tipo "Twin-Tripler"

No caso de um sistema trifásico equilibrado, quando vários núcleos com as características daquele apresentado no subitein anterior são arranjados especialmente em série e paralelo, de forma a se ter um equilíbrio das forças magnetomotrizes (*Jinm*) em cada núcleo, há uma compensação parcial das harmônicas geradas cm cada núcleo individualmente e, portanto, uma melhoria substancial na forma de onda da tensão do reator. Estes arranjos são denominados de reatores saturados com núcleos múltiplos. Conforme Friedlander [12], para um reator formado por n núcleos, somente aparecerão as harmônicas características de ordem $2nk \pm 1$.

Seja, por exemplo, o reator de núcleos múltiplos denominado de "Twin-Tripler" Este reator é composto por um conjunto de 6 núcleos, separados em dois grupos e excitados simetricamente por um sistema trifásico, existindo dois enrolamentos primários em cada núcleo. A conexão dos enrolamentos é feita conforme mostrado na Fig. 3.6, a seguir:

Fig. 3.6 - Reator "Twin-Tripler'

Os 6 núcleos estão numerados em algarismos romanos na ordem em que suas forças magnetomotrizes (fmm) passam por zero, como pode ser observado das expressões a seguir e do diagrama fasorial apresentado na Fig. 3.7.

Fig. 3.7

Dc forma a sc obter a desejada compensação harmônica, é necessário que se tenha um intervalo de tempo (a) entre duas passagens consecutivas dc fluxo e da fmm igual a:

(3.5)

Assim é possível determinar a relação de espiras Nj / N_2 entre os dois enrolamentos para satisfazer esta condição. A partir da Fig. 3.7, pode-se obter a seguinte relação:

$$\frac{N_{1}}{N_{2}} = \frac{Sen\%}{Sen(60-\%)} \quad \mathbf{7}^{-n/3} = \frac{1}{2} = 0.366 \qquad para \ a = 30^{\circ} \tag{3.8}$$

Para uma alimentação através de uma fonte de corrente ideal, a tensão em cada núcleo continuará mantendo as características daquela do reator elementar, isto é, nula quando o núcleo estiver saturado e na forma de pulso durante a passagem do seu fluxo por zero. A forma de onda da tensão entre fases será, então uma combinação de pulsos, conforme mostrado na Fig. 3.8, a seguir:

Vab

II	III	IV	V	VI	
N,	N.	N, +	N,	NĹ	Œ
	N	N ₂			

Decompondo-se em série de Fourier cada pulso de tensão isoladamente, de maneira similar a do reator elementar do subitem 3.2, e efetuando-se a soma das séries resultantes dos 6 pulsos, tem-se:

$$Vab (cot) = \bigvee_{n,-} \bigvee_{i} \frac{4 A}{p n h} \frac{(ii Q)}{V 2} para \quad n = 1,3,5...$$

$$Vab((ol) = 0 \qquad para \quad n = 2,4,6 ...$$
(3.9)

Onde:

 $A_{2} = A_{5} = N,$ $A_{3} = A_{6} = N, + N_{2}$ $e = 30^{\circ}$ $e_{,,,} = 15^{\circ}$ $0_{2} = 45^{\circ}$ $e_{3} = 75^{\circ}$ **604=** 105^{\circ} $e_{45} = 135^{\circ}$ **606=** 165^{\circ}

A tabela 3.2, a seguir, apresenta as amplitudes das componentes harmônicas resultantes em relação à componente fundamental (n=1):

Ordem da Harmônica	Amplitude (% da Fundamental)
1	100.0
3	0.0
5	0.0
7	0.0
9	0.0
11	9.09
13	7.69
15	0.0
17	0.0
19	0.0
21	0.0
23	4.35
25	4.00
27	0.0
29	0.0
31	0.0
33	0.0
35	2.86
37	2.70
39	0.0
41	0.0
43	0.0
45	0.0
47	2.13
49	2.04

a bela 3.2

Pode-se, portanto, observar desta tabela que o conteúdo harmônico da tensão fase-fase do reator "Twin-Tripler" só contém as harmônicas características de ordem 11° , 13° , 23° , 25° e assim por diante, ou seja, as harmônicas $12 \text{ k} \pm 1$, conforme mencionado no início deste subi tem.

Estas harmônicas características podem ser reduzidas ainda mais através da agregação de dois conjuntos de enrolamentos secundários, um para cada grupo de 3 núcleos, fechados em delta através de uma indutância, conforme está mostrado na Fig. 3.9 [13]. No entanto, como o valor desta indutância é fixo, esta redução complementar das harmônicas características só será efetiva para uma determinada faixa da corrente do reator. Ou seja, para se ter este efeito redutor em toda faixa de corrente de operação do reator a indutância deveria ser variável. Nos casos práticos isto é conseguido conectando-se a estes enrolamentos secundários um reator saturado auxiliar. No capítulo 4 é desenvolvida uma análise de sensibilidade em relação ao valor desta indutância.

Fig. 3.9 - Reator "Twin-Tripler" com Enrolamentos Secundários

3.4 Reator Saturado do Tipo "Treble-Tripler'

O reator "Treble-Tripler" é de concepção mais avançada do que o "Twin-Tripler" e apresenta vantagens significativas em relação a este último, principalmente no que se refere à compensação harmônica e à linearidade de sua característica Vx1]. Conforme Fig. 3.10, a seguir, ele é composto por um conjunto de 9 núcleos, sendo que 3 destes núcleos têm 2 enrolamentos e os restantes possuem 3 [07].

Fig. 3.10 - Reator "Treble-Tripler"

Os números de espiras dos enrolamentos primários (N_0 , N, , e N_2) são determinados de tal forma a resultar um intervalo de tempo entre a passagem por zero de duas *fmms* consecutivas de 20°, obtendo-se, assim, a necessária compensação harmônica. Desta forma, tem-se:

$$\frac{-1}{N_a} = -\frac{f}{V3} = r(OS \ 30^\circ + \frac{180 \times n}{n \ J} \qquad Cos] \ 30^\circ + \frac{180 \times 1}{9 \ J} = 0.7422$$

$$N_a = N_a = N_a = N_a = 0.7422$$

$$(3.10)$$

Além destes enrolamentos primários há os enrolamentos secundários (N_a) que são fechados em delta e alimentam um reator saturado auxiliar para minimizar as harmônicas características. Com esta concepção as harmônicas características resultam 17°, 19", 35^a, 37" etc, ou seja, de ordem **18k ± 1**, com níveis inferiores a 2%.

3.5 Características de Operação de um Reator Saturado

V

Em consequência de sua característica não linear, um reator saturado (**RS**) do tipo "Twin-Tripler" ou "Treble-Tripler" consome potência reativa variável em função do nível de tensão aplicada. A característica Veílcaz x Iefícaz em regime permanente de um RS resulta similar à característica () x i dos núcleos utilizados na montagem do RS (Fig. 3.1) no que se refere a:

- Corrente desprezível (abaixo de 1%) para níveis de tensão inferior ao nível de saturação;
- Joelho bem agudo;
- Característica razoavelmente linear acima do nível de saturação.

A Fig. 3.11, a seguir, mostra a característica Veficaz x I eficaz típica de um RS, bem como seu circuito equivalente em regime permanente.

Fig. 3.11 - Característica Vxl do Reator Saturado

Da Fig. 3.11 verifica-se que um RS se comporta como uma reatância não linear independente de qualquer controle. Tem capacidade de se auto-ajustar em um intervalo de meio ciclo de forma que:

- Pode controlar rapidamente as sobretensões sustentadas do sistema;
- A elevação de tensão acima do nível Vrs é praticamente proporcional à elevação da corrente, sendo este fator de proporcionalidade referido como reatância equivalente **Xrs**.
- Usado como um reator em derivação o RS consome potência reativa auto-ajustável de maneira similar a um compensador síncronos ideal, sem inércia e com resposta imediata, operando sub-excitado. Pode ser, portanto, modelado em regime permanente através do circuito da Fig. 3.11.

Como já mencionado não se tem conhecimento do emprego dos reatores saturados em substituição a reatores de linhas de transmissão, objeto maior deste trabalho. Portanto, até então, os RSs só foram empregados em compensadores estáticos. Nos projetos usuais destes compensadores estáticos empregando reatores saturados tem-se as seguintes características típicas [19], [23].

- A reatância equivalente Xrs varia normalmente na faixa de 8 a 15%, na base nominal do RS. Caso necessário, reatâncias menores podem ser obtidas através da conexão de um capacitor em série com o RS. No entanto, a inserção deste capacitor pode introduzir oscilações sub-harmônicas entre o RS e o capacitor, especialmente em sistemas fracos. Assim, é necessário agregar filtros sub-harmônicos amortecedores ao capacitor.
- Até então, projetos de reatores para conexão direta em níveis de tensão superiores a 132 kV se mostrou antieconômico ou impraticável, particularmente no que se refere à interconexão de seus vários enrolamentos e ao projeto dos filtros. Assim, para níveis de tensão superiores a este, é geralmente utilizado um transformador abaixador, com variação do tape sob carga (LTC). Em sistemas onde se tem grandes variações de tensão em regime permanente, este LTC permite efetivamente alterar a característica da Fig. 3.11 em patamares, isto é, permite introduzir uma correção discreta da tensão, deixando o controle contínuo e fino para o próprio RS.
- Instalação de bancos de capacitores em derivação, em paralelo com o RS, quando se deseja que o compensador estático também forneça potência reativa.

A Fig. 3.12, a seguir, apresenta os componentes básicos de um compensador estático empregando reatores saturados, com sua característica Veficaz x Ieflcaz típica.

Transformador Abaixador (LTC)

Banco de Capacitor

Capacitor p/ Correção da Inclinação, Filtro Subharmônico e Circuito Protetor

Fig. 3.12 - Compensador Estático com Reatores Saturados

TABELAS

i J

Cliente	Local	Potencia Contínua (IVIVAr)	Tensão de Conexão (kV)	Tensão Controlada (kV)	Ano de Entrada
Ethiopian Electric Ligth & Power	Etiópia	0/+7	15	45	1964
Central African Power Corporation	Zâmbia	-35/+20 (-80/2 min)	11	330/220	1969
Siderurgia Nacional	Portugal	-2/+21	30	150	1970
Siderurgia Nacional	Portugal	-2/+21	30	150	1972
Irish Steel Holdings	Irlanda	0/+25	6	110	1972
National Iron and Steel Mills	Singapura	-3.5/+31 (-22.5/5min)	22	66	1972
British Steel Corporation	Inglaterra	+ 15/+100	33	132	1973
Cleveland Potash	Inglaterra	-21+1	11	66	1973
Société Nationale d'Electricité de La Republique du Zaire	Zaire	-2/+21	30	220	1974
South African Iron & Steel Industrial Corporation (ISCOR)	Africa do Sul	-19/+26	33	132	1974
Société Nationale d'Electricité de La Republique du Zaire	Zaire	-8 / +60	30	220	1975
South African Iron & Steel Industrial Corporation (ISCOR)	Africa do Sul	-20 / +84	33	132	1975
European Organization for Nuclear Research (CERN)	Suiça	-15/+85	18	380	1975
South African Iron & Steel Industrial Corporation (ISCOR)	Africa do Sul	-7/+90	33	132	1975
Sivaco Wire & Nail Company	Canadá	+ 10/+50	13.8	230	1975
British Steel Corporation	Inglaterra	-14/0	11	275	1977
Harris-Daishowa	Austrália	0 / +10	11	66	1977
South African Railways	Africa do Sul	+6 / +20	11	132	1978
National Electric Power Authority	Nigéria	-27/0	33	132	1978
National Electric Power Authority	Nigéria	-18/0	11	380	1978

Tabela 3.1 - Relação dos Compensadores Estáticos com Reatores Saturados Fornecidos pela GEC

Cliente	Local	Potência Contínua (MVAr)	Tensão de Conexão (kV)	Tensão Controlada (kV)	Ano de Entrada
European Organization for Nuclear Research (CERN)	Suiça	-15/+85	18	380	1978
British Coal (11 Unidades)	Inglaterra	-0.4/+5.7	11	11	1978-1981
Companhia de Aços Especiais Itabira (ACESITA)	Brasil	-3/+40	13.8	230	1979
Capricórnia Electricity Board	Austrália	0/+60	66	66	1979
Comission Federal de Electricidad	México	-73 / +90	69	230	1981
Irish Steel Holdings	Irlanda	+ 17.3/+50	38	110	1981
Societe National de Construction Mechaniques (SONACOME)	Algéria	+1/+12	10	60	1982
Elura Coal Mine	Austrália	07+15	11	11	1982
Britsh Coal (2 Unidades)	Inglaterra	0/ + 12	11	11	1982
State Energy Commission of Western Australia (3 Unidades)	Austrália	-32/+44	29.5	132	1984
Tanzania Electric Supply Co Ltd	Tanzânia	-30/0	11	11	1985
National Coal Board	Inglaterra	+0.4/+5.7	11	11	1985
Central Electricity Generating Board (2 Unidades)	Inglaterra	-150/+150 (-657/0.5S)	56.6	400	1985
Central Electricity Generating Board	Inglaterra	-150/ + 150 (-657/0.5S)	56.6	400	1985
Companhia Ferro e Aço de Vitoria	Brasil	+4 / +55	">-í	138	1986

Tabela 3.1 - Relação dos Compensadores Estáticos com Reatores Saturados Fornecidos pela G E C Continuação

4. MODELAGEM DE UM REATOR SATURADO NO PROGRAMA ATP

4.1 Introdução

Por ser baseado em uma condição de operação totalmente não linear, não é possível calcular e analisar o desempenho de um reator saturado através das ferramentas tradicionais para análise de sistemas elétricos de potência à frequência fundamental, isto é, programas de fluxo de potência, estabilidade etc. De forma a se ter disponível um recurso para análise destes equipamentos surgiu a idéia de se desenvolver uma modelagem do mesmo no programa de transitórios eletromagnéticos EMTP-ATP (Electromagnetic Transient Program - Alternative Transient Program) [28], pelas seguintes razões principais:

- É um simulador digital de circuitos elétricos no domínio do tempo extremamente poderoso e versátil, com capacidade de representação tanto de elementos lineares como não-Iineares, além de permitir o desenvolvimento e representação de sistemas de controle.
- É uma ferramenta de uso universal e de disponibilidade pública.
- Requer equipamentos muito simples para sua implantação, podendo ser rodado inclusive em um micro PC-XT, embora seja mais conveniente a utilização de um PC-486 DX.

E interessante observar que no início não se estava totalmente seguro da viabilidade desta representação, principalmente pela possibilidade de ocorrerem instabilidades numéricas incontroláveis devido a existência de vários núcleos, eletricamente próximos, entrando e saindo da saturação. No entanto, a partir dos primeiros testes constatou-se que, embora ocorram, estas oscilações são perfeitamente controláveis e não chegam a interferir nos resultados.

Este capítulo aborda o desenvolvimento e os testes realizados com esta modelagem no programa ATP, bem como o levantamento das características de um reator saturado com fonte ideal de tensão, incluindo análise de sensibilidade dos parâmetros mais influentes.

4.2 Caracterização do Reator Saturado a Ser Modelado e dos Testes Básicos

Embora o tipo mais comum para uso prático seja o reator "Treble-Triple" de 9 núcleos, optou-se neste trabalho em modelar o reator "Twin-Triple" de 6 núcleos, por ser mais simples e por servir totalmente para comprovar a viabilidade de representação no ATP.

De forma a se ter uma ordem crescente de complexidade, procedeu-se ao desenvolvimento dos seguintes modelos:

- Modelagem de um reator básico (o mais simples), isto é, sem enrolamentos secundários e sem capacitor para correção da inclinação, conforme esquema da Fig. 4.1;
- Modelagem do reator básico com inclusão dos enrolamentos secundários;
- Modelagem do reator básico com inclusão dos enrolamentos secundários e do capacitor para correção da inclinação.

Fig. 4.1 - Reator "Twin-Tripler" Básico

Nesta fase, as simulações efetuadas com estes modelos no ATP compreenderam à alimentação do reator através de uma fonte de tensão senoidal, ideal ou não, procurando-se, portanto, reproduzir, instante a instante, a operação em regime permanente do mesmo. O circuito básico utilizado nestas simulações está apresentado na Fig. 4.2.

Fig. 4.2

Com relação à fonte de tensão considerou-se as seguintes condições:

- Fonte ideal, isto é, com valores Rf e Xf nulos;
- Fonte com potência de curto-circuito entre 2 a 5 vezes a potência nominal do reator. Neste caso foram determinados os valores de Rf e Xf;

Para cada condição de fonte, variou-se sua amplitude Vf dentro de uma faixa bastante ampla para cobrir a operação do reator sem ocorrência de saturação até níveis de saturação bastante elevados. Em cada caso foram analisadas as formas de onda da corrente Ir e do fluxo dir no reator, em termos de valores eficazes e espectro harmônico. Através deste procedimento construiu-se a característica Veílcaz x Ieficaz do reator.

4.3 Parâmetros Básicos do Reator Saturado

Não se encontrou na literatura consultada dados típicos de projeto de RSs que pudessem ser facilmente utilizados na modelagem dos mesmos no ATP. Desta forma, foi necessário o desenvolvimento de anteprojetos simplificados dos RSs para definir suas características básicas. Este subitem apresenta as características definidas para os RSs modelados.

Na definição destas características básicas adotou-se como premissa básica a aplicação de um reator saturado em substituição a um reator convencional de uma linha de transmissão longa em 230 kV. O tipo de operação básica deste RS deveria ser o seguinte:

- Para condição de plena carga do sistema, seria desejável que o RS não saturasse, ou seja, que o mesmo estivesse fora de operação. Assim, considerando que a faixa de variação de tensão em regime normal de operação é de 0.95 a 1.05 pu, o RS não deveria provocar tensões abaixo de 0.95 pu para a condição de plena carga do sistema.
- Para condição de energização em regime permanente, ou seja, com o sistema em vazio, o RS deveria estar plenamente saturado de forma a manter a tensão abaixo de 1.10 pu, conforme tratado no subitem 2.3.

Desta forma foram estudados alguns reatores básicos, cujas características são apresentadas a seguir:

- Tensão nominal (Vn): 230 kV
- Potência nominal (Sn): Denominando-se potência nominal como a máxima potência absorvida continuamente pelo RS, isto é, a máxima potência absorvida em regime permanente, considerou-se um RS com potência nominal na faixa de 10 a 20 MVA. Isto resulta em uma potência de 1.67 a 3.33 MVA por núcleo.
- Característica dos enrolamentos primários: Conforme [12], a tensão em cada núcleo é dada por:

$$y_{max}JJlA = 2^{A}Jl = 6^{A}A^{A}V$$

/; 6

Como em cada núcleo há dois enrolamentos primários, tem-se:

$V_x + V_2 = Vnucleo$

Mas, conforme equação (3.8), tem-se:

N, V,

Logo as tensões nominais dos enrolamentos resultam:

V,=48.6kV

 $V_{2} = 17.8 \text{ kV}$

Em termos de reatância de dispersão (Xd) destes enrolamentos considerou-se níveis de 5 a 15% na base nominal. Em princípio desprezou-se a resistência de dispersão (Rd), no entanto sua influência foi verificada considerando, em alguns casos, um fator de qualidade típico de 50 (Xd / Rd = 50).

Característica dos enrolamentos secundários: Nos casos em que se considerou a presença destes enrolamentos, conectados em delta, adotou-se para os mesmos as seguintes características:

- . Tensão nominal: 30% da tensão nominal do enrolamento primário com N] espiras, ou seja, 14.58%.
- . Reatância de dispersão dos enrolamentos (considerou-se esta reatância incluindo a reatância do enrolamento mais a reatância de fechamento do delta): faixa de 5 a 50% na base nominal do enrolamento.

Características dos núcleos:

. Joelho: A tensão de linha a partir da qual ocorre saturação dos núcleos pode ser calculada considerando que entre duas fases há 4 enrolamentos em série (2 com Nj e 2 com N₂ espiras, sendo Nj / N₂ = 0.366) e que o intervalo de tempo entre a passagem de dois fluxos consecutivos por zero é de 30°, conforme subitem 3.3. Assim, tem-se:

$$V_{\pi} = -\pounds - \{k \ 0.268 \ Z - 45^{\circ} + k \ 0.732 \ Z - 15^{\circ}\} + -2 - (k \ 0.268 \ Z 45^{\circ} + k \ 0.732 \ Z 15^{\circ})$$

(4.2)

 $k = \frac{!}{0.268 (V \ll 45^{\circ} + 0.732 \text{ Otfl}S^{\circ})} = 1.11537$

Ou seja, devido a defasagem de 30° existente entre as tensões de cada enrolamento, suas amplitudes resultam aproximadamente 11.15% acima daquela que se obteria pela divisão uniforme da tensão de linha pelos enrolamentos. A tabela 4.1, a seguir, apresenta a tensão de início de saturação do RS, em função do nível do joelho de cada núcleo.

Joelho (pu)	Tensão de Saturação (pu)
0.90	0.807
0.95	0.852
1.00	0.897
1.05	0.941
1.10	0.986

Tabela	4.1
--------	-----

Para os modelos desenvolvidos, adotou-se um joelho de 1.00 pu , o que corresponde a se ter início de saturação praticamente a partir de 0.90 pu de tensão.

Corrente de magnetização: 0.01%, correspondente a uma reatância de magnetização (Xm) de 100000%.

Reatância saturada (Xac): Considerou-se dois casos básicos, um com Xac de 15% e outro de 5%.

Número de segmentos da curva de saturação: Devido o programa ATP representar o ramo de saturação através de uma indutância pseudo não linear (tipo 98), é necessário algum cuidado no estabelecimento do número de segmentos da curva e do passo de integração, para que a solução no tempo caminhe ao longo dos segmentos destes elementos de forma suave, ou seja, é importante evitar mudanças bruscas de segmentos. Inicialmente analisou-se curvas de saturação com número de segmentos variando entre 2 a 5, tendo-se concluído que o caso com 2 segmentos produzia um compromisso adequado. A Fig. 4.3, a seguir, apresenta a característica V x1 (valores eficazes) dos dois núcleos básicos considerados.

Fig. 4.3 - Características Vxl dos Núcleos Considerados

4.4 Descrição da Modelagem no ATP

O modelo do RS foi implementado na versão 5 do ATP, com os recursos normais disponíveis no programa.

Praticamente a modelagem do RS envolve a representação do conjunto de núcleos com os seus respectivos enrolamentos. Cada núcleo foi modelado separadamente, como se fossem circuitos magnéticos independentes, através do modelo de componente de transformador saturável (Saturable Transformer Component), com 3 enrolamentos cada um. As características de saturação do núcleo foi representada no enrolamento primário com Nj espiras.

A representação de cada núcleo isoladamente é válida desde que não haja saturação nas juntas que envolve os vários núcleos (yokes), o que pode eventualmente ocorrer para correntes muito elevadas nos enrolamentos. No entanto, conforme [16], esta hipótese simplificadora é perfeitamente aceitável na maioria dos casos práticos.

Com a finalidade de evitar oscilações numéricas na tensão decorrentes de mudanças repentinas da corrente elétrica pelos enrolamentos, quando o núcleo sai ou entra em saturação, foi inserido um resistor dimensionado pelo passo de integração (opção "DIVIDEDELTAT" do programa) em paralelo com o ramo de saturação. Verificou-se, no entanto, que as perdas adicionais causadas por este elemento não produziu nenhum efeito significativo de mascaramento dos resultados.

Núcleo 1 59.1 O NUIENI 16 Uc 4X 6 UV IBC М NU2EN2 7.9 n NU4EN1 **V**₂,,, NUIEN2 28.3 £i NUIEN3--w w . V. m 6 k Y REATOI

A Fig. 4.4, a seguir, apresenta a representação completa de um núcleo (núcleo 1) do RS no ATP.

No Apêndice A é apresentado o detalhamento desta modelagem, incluindo:

- Circuito elétrico modelado do RS.
- Arquivos de entrada e saída da subrotina "SATURATION" para obtenção das características 🤹 (valores instantâneos) dos núcleos.
- Arquivos de entrada e saída referentes à simulação do regime permanente do RS para uma tensão de fonte de 1.30 pu.

4.5 Testes do RS Básico

1

Neste item apresenta-se os resultados dos testes de regime permanente efetuados com a modelagem de um RS básico com reatância de núcleo saturado (Xac) igual a 15%, cujas características principais está relacionada no Apêndice A.

4.5.1 Sem Enrolamentos Secundários (Ou com os mesmos em aberto)

Testes variando a amplitude da tensão de alimentação

Condição do teste: Fonte ideal

A tabela 4.2, a seguir, apresenta os principais resultados obtidos.

Tensão Fonte (pu)	Corrent (,	e Reator A)	Potência Absorvida (MVAr)	Distorção Total da Corrente		Forma de Onda da Corrente (Figura)
· ·	Pico	Eficaz	0)	% Ieficaz	%Inominal	(3)
					(2)	
0.80	0.18	0.13	0.04	0.038	0.0001	
0.90	0.20	0.14	0.05	0.983	0.003	Fig. 4.5
1.00	0.40	0.20	0.08	12.6	0.055	
1.10	1.50	0.64	0.28	48.3	0.687	
1.20	44.9	27.8	13.3	21.5	13.2	
1.30	97.8	65.9	34.1	14.8	21.6	Fig. 4.6
1.40	150.7	104.3	58.2	13.1	30.2	
1.50	203.9	142.7	85.3	12.1	38.1	

(1) Potência do reator calculada por: *S* = -*Jl Veficaz Ieficaz*

(2) Corrente nominal do reator dada por: In =

Vn

 $= 0.0452 \ kA$

(3) Figuras no final do capítulo

Pode-se observar da tabela anterior e das Figs. 4.5 e 4.6 os seguintes pontos:

- O regime permanente do reator é alcançado rapidamente, isto é, não há dificuldade em se atingir o regime. Em algumas figuras apenas nos instantes iniciais nota-se oscilações mais elevadas
- O início de saturação ocorre em torno de 0.9 pu de tensão.
- No início da saturação, isto é, para tensões entre 0.9 a 1.1 pu, a forma de onda da corrente é extremamente distorcida, embora de baixa amplitude (menor que 1 A).
- Para tensões mais elevadas (1.30 a 1.50 pu) a forma de onda da corrente mostra-se típica de reatores saturados. Embora menos distorcida ainda é inaceitável no que tange a uma aplicação prática, pois os níveis de distorção total são muito elevados, conforme está indicado na tabela 4.2. Isto demonstra a necessidade da inclusão dos enrolamentos secundários, cujo objetivo principal é compensar harmônicas.
- 4.5.2 Com Enrolamentos Secundários
 - Testes variando reatância total dos enrolamentos secundários

Condição do teste: Fonte ideal com amplitudes de 1.10 pu e 1.30 pu

As tabelas 4.3 e 4.4 apresentam os principais resultados obtidos, para as tensões de 1.10 e 1.30 pu respectivamente:

Reatância Secundário (%)	Corrent (,	e Reator A)	Potência Absorvida (MVAr)	Distorção Total da Corrente		Forma de Onda da Corrente (Figura)
	Pico	Eficaz		% Ieficaz	%Inominal	
200	18.8	12.2	5.3	7.4	2.0	
100	27.3	18.3	8.0	6.5	2.6	Fig. 4.7
80	30.1	20.5	9.0	6.7	3.0	
60	33.5	23.2	10.2	7.4	3.8	
40	38.7	26.9	11.8	8.8	5.2	
20	47.5	32.4	14.2	11.2	8.0	Fig. 4.8
10	53.5	36.2	15.9	12.8	10.3	
5	57.4	38 5	16.9	13.6	11.6	

Tabela 4.3 - Tensão de Fonte de 1.10 pu

Reatância Secundário <%)	Corrent	e Reator A)	Potência Absorvida (MVAr)	Distorção Total da Corrente		Forma de Onda da Corrente (Figura)
	Pico	Eficaz		% Ieficaz	%Inominal	
200	98.9	66.1	34.2	9.7	14.2	
100	98.1	66.6	34.5	6.7	9.9	Fig. 4.9
80	98.2	67.5	35.0	4.6	6.9	
60	100.5	70.3	36.4	2.3	3.6	
40	113.2	77.0	39.9	3.8	6.5	
20	129.6	89.1	46.1	3.5	6.9	Fig. 4.10
10	139.8	97.6	50.5	5.2	11.2	
5	145.6	103.0	53.3	6.7	15.3	

Tabela 4.4 - Tensão de Fonte de 1.30 pu

Pode-se observar das tabelas anteriores e das Figs. 4.7 a 4.10 os seguintes pontos:

- A agregação dos enrolamentos secundários fechados em delta produzem uma substancial compensação harmônica, tomando possível a aplicação prática do reator saturado. A título ilustrativo, a tabela 4.5, a seguir, apresenta uma comparação dos níveis de distorção total da corrente do reator sem e com estes enrolamentos (reatância de 60%).

Tensão de Fonte	Distorção Total de Corrente					
(pu)	% Ieficaz					
_	Sem Enrolamentos Secundários	Com Enrolamentos Secundários				
		(Reatância = 60%)				
1.10	48.3	7.4				
1.30	14.8	2.3				

Tabela 4.5

- O valor da reatância que produz a maior compensação harmônica depende do ponto de operação do reator. Por exemplo, para uma tensão de 1.10 pu estes valor é superior a 100%, enquanto que para uma tensão de 1.3 pu o valor ótimo situa-se entre 40 e 60%. Por esta razão os reatores saturados usuais dispõem, ao invés de enrolamentos secundários fechados simplesmente através de uma reatância linear, de um reator saturado secundário, onde se pode melhor controlar esta compensação harmônica em toda faixa de operação do reator.
- Os enrolamentos secundários ligados em delta produzem uma corrente de compensação harmônica composta basicamente de 3" harmônica c seus múltiplos. Ela tem o efeito de desmagnetizar os núcleos, fazendo com que os mesmos permaneçam não saturados por um período superior a 30°, conforme pode ser observado comparando-se as Figs. 4.11 e 4.12, respectivamente sem c com enrolamentos secundários. Assim, da Fig. 4.11 verifica-se que os núcleos ficam não saturados (Fmm nula ou tensão não nula) por um período correspondente a aproximadamente 27°, enquanto na Fig. 4.12 este período é da ordem de 46°.

• Testes variando a reatância de dispersão dos enrolamentos primários

Condição do teste:

- Fonte ideal com amplitude de 1.30 pu
- Reatância total do secundário de 60%

A tabela 4.6 apresenta os principais resultados obtidos:

Dispersão do Primário (•/.)		Corrente Reator (Aeficaz)	Potência Absorvida (MVAr)	Distorção Total da Corrente		Forma de Onda da Corrente (Figura)
Reatância	Resistência			% Ieficaz	%Inominal	
5	0.0	90.9	47.1	5.2	10.5	
15	-	70.3	36.4	2.3	3.6	Fig. 4.13
	0.3(1)	70.3	36.4	2.3	3.6	
30	0.0	55.1	28.5	3.8	4.6	

(1) Fator de qualidade típico de 50.

Tabela 4.6

Pode-se observar que através da variação da reatância de dispersão dos enrolamentos primários pode-se produzir um efeito similar ao da variação da reatância do secundário. Desta forma a otimização do projeto do reator deve levar em conta estes dois elementos. Quanto à resistência de dispersão seu efeito é insignificante.

• Testes variando a potência de curto-circuito da fonte

Condição do teste.

- Reatância de dispersão do primário de 15%
- Reatância total do secundário de 60%
- Potência da fonte: Entre 550 a 75 MVA
- Amplitude da fonte de tensão: A amplitude da fonte de tensão foi variada de modo a se manter praticamente o mesmo ponto de operação do reator, independente da potência da fonte. O ponto de operação considerado corresponde ao caso com fonte ideal de 1.30 pu, ou seja, 36.4 MVAr (vide tabela 4.4)
- A impedância da fonte foi calculada por:

A tabela 4.7 apresenta os principais resultados obtidos:

Pce da Fonte	Relação Pcc/Prs	Corrente Reator	Tensão Reator	Distorça	ão Total	Forma (Fig	de Onda ura)
(MVA)		(Aeficaz)	(kVeficaz)	Corrente (%Ieficaz)	Tensão (%Veficaz)	Ι	Α
550	15.1			2.2	13		
350	9.6	70.3	172.6	2.2	1.9	Fig.4.14	Fig.4.15
100	2.7			2.0	5.0		
75	2.1			1.9	6.1		

Pode-se obter as seguintes observações destes testes:

- A medida que a potência de curto-circuito da fonte decresce maiores níveis de distorção harmônica ocorrem na tensão da barra do reator, enquanto a distorção da corrente permanece praticamente constante. Julga-se que a Pcc de 75 MVA seja a mínima possível para operação do reator (2.1 vezes a potência de operação do mesmo).
- Quanto a forma de onda da tensão, as oscilações de alta frequência que aparecem na Fig. 4.15 são resultantes da entrada e saída dos núcleos na região de saturação. No que se refere ao conteúdo harmônico, a tabela 4.8, a seguir, apresenta a decomposição tensão do reator nas principais harmônicas, para uma Pcc de 100 MVA.

Ordem da Harmônica	Porcentagem da Fundamental
1	100.0
2	0.45
10	0.12
11	2.63
12	0.92
13	3.21
22	0.44
23	2.06
25	1.48
26	0.44

Tabela 4.8

4.6 Levantamento das Características V x1 do RS

Este subitem apresenta o levantamento da Vx1 eficaz em regime permanente para os seguintes RSs básicos:

- Reator Básico 1 (RS1): Este reator é aquele que foi utilizado nos testes básicos do subitem 4.5 anterior, ou seja,:
 - . Base: V 230 kV S = 18MVA
 - .Xac = 15%
 - X d = 15%
 - . Reatância do secundário = 60%
- Reator Básico 2 (RS2): A idéia foi de estudar um RS com característica mais plana, com as seguintes características:
 - . Base: V 230 kV S = 18 M V A
 - . Xac = 5%
 - . X d = 5%
 - . Reatância do secundário = 30%

O levantamento das características Vx1 consiste em se aplicar ao RS o teste de variação da amplitude da tensão de alimentação, com fonte ideal, como feito no subitem 4.5.1, e anotar os valores da tensão e corrente eficazes do reator. Este procedimento foi aplicado aos RSs relacionados anteriormente, para o caso com e sem capacitor corretor de inclinação.

- 4.6.1 Característica Vxl sem Capacitor Corretor da Inclinação
 - A Tabela 4.9, a seguir, apresenta os resultados obtidos:

Tensão de Fonte	Reator Básico 1		Reator Básico 2	
(pu)	Corrente (Aeficaz)	Distorção Total (%Ieficaz)	Corrente (Aeficaz)	Distorção Total (%Ieficaz)
0.90	0.14	2.1	0.52	0.03
0.95	0.30	53.9	1.1	1.4
1.00	4.4	45.5	11.4	11.5
1.05	13.3	14.1	35.0	9.2
1.10	23.2	7.4	62.4	9.0
1.20	44.9	4.9	124.5	15.2
1.30	70.3	2.3	231.1	35.3
1.40	104.2	4.5	362.9	56.2
1.50	143.2	5.1	495.8	83.4

Caso se adote para a máxima tensão em regime permanente o valor de 1.10 pu, resultam os seguintes níveis de potência máxima contínua dos reatores (potência nominal):

$$Sn_{2} = V3 \times 1.1 \times 230 \times 0.0232 = 10.2 \ MVAr$$
 -> $RS \setminus Sn_{2} = V3 \times 1.1 \times 230 \times 0.0624 = 27.3 \ MVAr$ -> $RS2$

Os resultados em forma gráfica estão apresentados nas Figs. 4.16 e 4.17, a seguir:

Fig. 4.16 - Característica Vxl eficaz nas Bases Nominais dos Reatores

As reatâncias equivalentes dos reatores nas bases nominais dos mesmos, determinadas a partir das suas características Vx1, resultaram em:

-RSI: Xrs, =6.1%

- RS2: $Xrs_2 = 4.7\%$

Fig. 4.17 - Distorção Harmônica Total da Corrente

As Figs. 4.18 e 4.19, a seguir, apresentam o espectro harmônico das formas de onda das correntes nos dois reatores para uma tensão de alimentação de 1.20 pu.

Espectro Harmônico da Corrente (% da Fundamental)

Fig. 4.18 - Espectro Harmônico da Corrente no RS1 para 1.20 pu de Tensão

Fig. 4.19 - Espectro Harmônico da Corrente no RS2 para 1.20 pu de Tensão

4.6.2 Característica Vxl com Capacitor Corretor da Inclinação

De forma a se obter características mais planas que as apresentadas na Fig. 4.16, ou seja, reatâncias equivalentes mais baixas, pode-se agregar ao RS um sistema corretor de inclinação, ou seja, capacitores corretores de inclinação e filtro de subharmônicas. A Fig. 4.20, a seguir, apresenta o diagrama unifílar do RS com estes elementos, bem como os componentes do filtro de subharmônica:

Fig. 4.20 - Circuito Compensador de Inclinação

O sistema compensador de inclinação deve satisfazer as seguintes condições:

- Apresentar uma característica capacitiva à frequência fundamental.
- Apresentar uma característica resistiva à frequência de ressonância.

A determinação dos parâmetros destes elementos pode ser determinado através do seguinte procedimento [07]:

- Cálculo da frequência de ressonância, dada por:

Onde:

- . f.: frequência de ressonância (Hz)
- . f_e: frequência fundamental (Hz)
- . n: ordem da frequência de ressonância

. k: montante a compensar da reatância equivalente do reator. Por exemplo, caso de deseje compensar 80%, então k=0.8.

- Cálculo do capacitor corretor

$$r = \frac{1}{k < o_{\mu} Lrs}$$

Onde:

Cc: Capacitor corretor da inclinação

 $co_0 = 271 f_0$

Lrs: Indutância equivalente do RS

- Cálculo da indutância filtro (L_F):

$$L_F = \left(1 - n^2\right) Lrs = \left(1 - k\right) Lrs$$

- Cálculo da capacitância do filtro (Cp):

$$\frac{2 n^2 - 1}{\prod^2 (1 - n^2)} \frac{1}{\omega_o^2 Lrs}$$

- Cálculo da resistência do filtro (R|.-):

 $R_{,.} = n (O_{,.} Lrs)$

Para um montante de compensação em torno de 50% para os dois reatores básicos, os parâmetros do sistema de correção de inclinação estão apresentados na tabela 4.10, a seguir:

Parâmetro	Reator Básico 1 (RS1)	Reator Básico 2 (RS2)
Xrs (%)(!)	6.1	4.7
Lrs (H)	0.839	0.242
k	0.50	0.50
n	0.7071	0.7071
Cc(uF)	16.77	58.25
L _F (H)	0.42	0.12
$C_{F}(UF)$	0	0
Rf (O)	111.9	32.2

(1) Base dos reatores:

RS1: V = 230kV S= 10.2 MVA RS2: V = 230 kV S - 27.3 MVA

Tabela 4.10

Os resultados obtidos quanto à determinação das novas características Vx1 dos reatores estão apresentados na tabela 4.11, a seguir:

Tensão de Fonte	Reator Básico 1 Com Capacitor Corretor		Reator Básico 2 Com Capacitor Corretor	
(pu)	Corrente (Aeficaz)	Distorção Total (%Ieficaz)	Corrente (Aeficaz)	Distorção Total (%Ieficaz)
0.95	0.55	55.6	1.9	53.8
1.00	5.2	38.7	12.8	39.8
1.05	19.9	10.6	41.8	9.4
1.10	30.3	5.8	76.9	6.3
1.20	60.9	3.6	177.4	4.9
1.30	111.9	4.5	384.9	7.1
1.40	169.5	5.6	590.1	7.8
1.50	227.2	6.3		

Tabela 4.10

As novas características do RSs estão apresentadas nas figuras 4.21 a 4.24, a seguir. As figuras 4.25 e 4.26, no final do capítulo, apresentam algumas formas de onda obtidas para os RS1 e RS2 com uma tensão de alimentação de 1.20 pu.

Fig. 4.21 - Correção da Inclinação do RSI

Fig. 4.22 - Espectro Harmônico do RSI com Correção

Fig. 4.23 - Correção da Inclinação do RS2

Fig. 4.24 - Espectro Harmônico do RS2 com Correção

Pode-se observar destes resultados os seguintes pontos:

- Conforme se observa das Figs. 4.25 e 4.26 o regime permanente dos reatores com o sistema de correção de inclinação demora um pouco mais para ser atingido, em comparação aos casos sem a correção da inclinação. Isto é devido a ocorrência de uma oscilação, com amortecimento dado pelo filtro, entre o RS e o capacitor corretor.
- Os valores resultantes das novas reatâncias equivalentes estão apresentados na tabela 4.12, a seguir. Nota-se que se obteve uma redução de aproximadamente 35% para os dois RSs, portanto diferente da correção projetada de 50%. Isto se deve a uma pequena influência dos parâmetros do filtro neste processo de correção.

Reator Saturado	Reatância Equivalente		
	Sem Sistema Corretor Inclinação	Com Sistema Corretor Inclinação	
RS1	6.1%	4%	
RS2	4.7%	3%	

Tabela 4.12

- Nota-se, comparando-se os resultados das tabelas 4.9 e 4.11, que há um aumento do nível de corrente para a tensão de alimentação de 1.10 pu quando se insere o sistema compensador de correção nos RSs (de 23.3 A para 30.3 A para o RS1 e de 62.4 A para 76.9 A para o RS2). Assim há um correspondente aumento na potência nominal dos mesmos.
- Com relação os espectros harmônicos as Figs. 4.22 e 4.24 mostram que não há uma alteração significativa com a inserção do sistema compensador de correção.

.

• •

FIGURAS

Fig. 4.5- Corrente na Fase A do Reator Teste de Variação da Tensão da Fonte (0.80 a 1.10 pu)

TENSÃO DE FONTE = 1.4 PU

TENSÃO DE FONTE = 1.5 PU

Fig. 4.6- Corrente na Fase A do Reator Teste de Variação da Tensão da Fonte (1.20 a 1.50 pu)

Fig. 4.7- Corrente na Fase A do Reator Teste de Variação da Rcatância do Secundário com Tensão de 1.1 pu

Fig. 4.8- Corrente na Fase A do Reator Teste de Variação da Reatância do Secundário com Tensão de 1.1 pu

Fig, 4.9 - Corrente na Fase A do Reator Teste de Variação da Reatância do Secundário com Tensão de 1.3 pu

Fig. 4.10 - Corrente na Fase A do Reator Teste de Variação da Rcatância do Secundário com Tensão de 1.3 pu

(1) NI??EN1 - NU2EN2 TENSÃO NO ENROLAMENTO 1 DO NÚCLEO 1

Fig. 4.11 - Reator sem Enrolamentos Secundários - Tensão Fonte de 1.30 pti

l(nw]

Fig. 4.12- Reator com Enrolamentos Secundários - Tensão Fonte de 1.30 pu

Fig. 4.13- Corrente na Fase A do Reator Teste de Variação da Rcatância e Resistência de Dispersão do Primário

Fig. 4.14- Corrente na Fase A do Reator Teste de Variação da Potência de Curto-Circuito da Fonte

Fig. 4.15- Tensão na Fase A da Barra do Reator Teste de Variação da Potência de Curto-Circuito da Fonte

Fig. 4.25- RS1 com Correção da Inclinação

Fig. 4.26- RS2 com Correção da Inclinação

5. APLICAÇÃO PRÁTICA COM O REATOR SATURADO

5.1 Introdução

No subitem 2.5 é apresentada e discutida a idéia de se aplicar um reator saturado em substituição ao reator convencional de uma linha de transmissão como forma de otimizar a compensação reativa do sistema. Neste item é apresentada uma aplicação prática desta alternativa para um sistema de transmissão típico em 230 kV.

5.2 Caracterização do Sistema de Transmissão

O sistema de transmissão estudado está apresentado na Fig. 5.1, a seguir:

As principais características deste sistema são as seguintes:

- Geração: 4 máquinas de 100 MVA com reatância subtransitória X^j de 25%.
- Transformadores elevadores: 4 trafos de 100 MVA com reatância de dispersão Xj de 15%.
- Linha de transmissão em 230 kV de 300 km, com potência característica de 132 MW e parâmetros distribuídos conforme tabela 5.1, a seguir:

Sequência	equência Parâmetros Distribuídos			Impedância	
	R (O/km) X (Q/km) C(nF		C(nF/km)	Característica	
				(0) (*)	
Positiva	0.093	0.520	8.6	400.5	
Zero	0.542	1.408	6.0	789.0	

(*) Desprezando a resistência da linha

- Carga máxima: 87 MVA, com fator de potência igual a 0.95 indutivo. Ao nível de 69 kV a impedância de carga resulta:

Zc = 82.65 + j27.17 Q

- Pára-raios: Considerou-se a existência de pára-raios ZnO de rating 192 kV no final da linha, com a característica Vx1 a surtos de manobra dada na tabela 5.2, a seguir:

I(kA)	V(kV)
1.0 IO''6	261.33
1.0 10°	280.00
1.0 IO''*	288.00
0.001	299.33
0.01	306.67
0.1	333.33
1.0	373.33
10.0	477.33

Tabela 5.2

- Transformadores abaixadores: 2 trafos de 100 MVA com reatância de dispersão XT de 15%, reatância de núcleo de ar X_{AC} de 40% e joelho de 1.15 pu.
- Potência de curto-circuito: Com as característica apresentadas anteriormente, resultam as seguintes potências de curto-circuito no início e fim de linha:
 - . Início de linha: 1000 MVA
 - . Fim de linha: aproximadamente 253 MVA
- 5.3 Alternativas de Compensação Reativa
- 5.3.1 Alternativa com Reator e Capacitor em Derivação

A Fig. 5.2, a seguir, apresenta o diagrama unifílar da alternativa com esquema de compensação reativa tradicional, ou seja, com a utilização de reator não manobrável no final da linha e um banco de capacitor manobrável junto à carga.

Fig. 5.2 - Alternativa Tradicional de Compensação Reativa

O estabelecimento dos nominais destes dois equipamentos foi feito com a seguinte premissa:

- Reator: Considerou-se um grau de compensação típico em torno de 40%. Como a potência reativa gerada pela linha em vazio é dada aproximadamente por:

 $Q_{L} = V^{2} co Cl m 230^{2} x 377 x 8.6 IO^{-6} x 300 = 51.45 MVAr$

Tem-se que a potência do reator seria de 20.6 MVAr. Logo, adotou-se um reator de 20 MVAr.

A partir do estabelecimento deste reator determinou-se a tensão de fonte de forma que no fim da linha em vazio resultasse uma tensão máxima de 1.10 pu, para permitir tomar o transformador (vide subitem 2.3). Esta tensão de fonte resultou 1.046 pu.

- Capacitor em derivação: A potência do banco de capacitor foi determinada de forma que em plena carga e com a tensão da fonte estabelecida anteriormente (1.046 pu), a tensão na barra de carga resultasse aproximadamente igual a 0.95 pu. O banco de capacitor resultou de 15 MVAr e a tensão na barra de carga resultou 0.949 pu.
- 5.3.2 Alternativa com Reator Saturado

A Fig. 5.3, a seguir, apresenta o diagrama unifilar da alternativa correspondente à substituição do reator convencional de fim de linha por um reator saturado, sem qualquer banco de capacitor.

<3D4=r Reator Saturado

Fig. 5.3 - Alternativa com Reator Saturado

Quanto às características do reator saturado adotou-se o reator básico 2 (**RS2**) descrito no capítulo 4, sem e com sistema compensador de inclinação, ou seja, com reatâncias equivalentes de 4.7% e 3.0% respectivamente na base de 230 kV e 27.3 MVA.

5.4 Análise em Regime Permanente

5.4.1 Tensões no Final da Linha

A tabela 5.3, a seguir, apresenta a tensão eficaz no fim de linha em função do nível da carga do sistema. Incluiu-se também, para fim de comparação, a condição sem qualquer equipamento de compensação reativa.

Nível da	Tensão no Final da Linha (pu)						
Carga	Sem Compensação	Alt. Tradicional	Alt. com o Reator Saturado RS2				
(%)		(Reator + Capacitor)					
			S/Correção Inclinação	C/Correção Inclinação			
100	0.972	0.952	0.969	0.969			
80	1.016	0.995	1.000	0.999			
60	1.062	1.040	1.027	1.024			
55	1.072	1.050/0.997 (*)	1.033	1.029			
40	1.108	1.0270	1.052	1.046			
30	1.130	1.046	1.063	1.056			
20	1.153	1.064	1.074	1.066			
0	1.195	1.100	1.094	1.083			

(*) Ocorre manobra do banco de capacitor em derivação

Tabela5.3

No que se refere aos reatores saturados a tabela 5.4, a seguir, apresenta a potência absorvida e os níveis de distorção harmônica total da corrente do reator e da tensão no fim de linha em função do nível de carga:

Nível da	RS2 Sem Correção Inclinação				RS2 Com Correção Inclinação			
Carga	(eficaz	S	Distorção Total		Ieficaz	S	Distorção Total	
(%)	(A)	(MVAr)	Tensão	Corrente	(A)	(MVAr)	Tensão	Corrente
			(%Veficaz)	(%Ieficaz)			(%Veficaz)	(%Ieficaz)
100	3.0	1.2	0.62	51.05	3.0	1.2	0.62	51.14
80	12.0	4.8	2.16	44.40	12.7	5.1	2.23	42.72
60	23.6	9.7	2.46	23.03	25.6	10.5	2.46	20.71
55	26.3	10.8	2.43	20.00	28.6	11.7	2.42	17,76
40	35.7	15.0	2.32	12.81	39.1	16.3	2.26	11.08
30	41.7	17.7	2.27	10.00	45.7	19.3	2.11	8.65
20	47.6	20.4	2.25	8.16	52.3	22.2	1.93	7.20
0	58.7	25.6	3.37	6.35	64.6	27.9	1.84	6.21