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Abstract. The goal of this work is to analyse the effects of con-
trol policies for the coronavirus (COVID-19) epidemic in Brazil.
This is done by considering an age-structured SEIR model with a
quarantine class and two types of controls. The first one studies the
sensitivity with regard to the parameters of the basic reproductive
number R0 which is calculated by a next generation method. The
second one evaluates different quarantine strategies by comparing
their relative total number of deaths.
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1. Introduction

At the ending of 2019 several cases of pneumonia of unknown eti-
ology were detected in Wuhan City in the Chinese province of Hubei.
The Chinese Country Office of the World Health Organization 1was in-
formed and reported that a novel coronavirus (officially named COVID-
19) was identified on January 7th as the cause of such infection. The
imminent potential for worldwide spread was soon recognized and an
international alert was issued.

COVID-19 was shown to be very lethal and easily spreading. China’s
effort to mitigate the harm were apparently quickly taken yet as many
as more than 75, 000 infected cases were reached in Wuhan before
the end of January [12]. Due to the highly interconnected world we
presently live in, the disease quickly spread outside China reaching
practically every country in the world with several different degrees of
seriousness. On March 11th, due to the seriousness of the situation, the
WHO declared it a Pandemic.

The goal of this study is to assess through the analysis of a differ-
ential equations model the importance of different control policies for
the Brazilian COVID-19 epidemic. Even though Brazil is considered
for the scope of this paper, the techniques and tools used in this study
can be easily adapted for any other country. The impact of differ-
ent control strategies are qualitatively evaluated and mathematically
based guidelines concerning different protective measures and quaran-
tine strategies are formulated. The paper is organized as follows: In
Section 2, the age-structured SEIR model with quarantine is formu-
lated. Demographic data from Brazil is introduced and discussed. In
Section 3, the classical SEIR model without vital dynamics and with
a quarantine compartment is studied. The goals here are, firstly, to
adjust parameters and to fit the real data, and secondly, to study the
necessary quarantine efforts and times so to be able to influence the
epidemic. In Section 4, the parameters for the age structured model
are adjusted (using the ones calculated on the previous section). The
next generation approach is used to calculate the basic reproduction
number and a sensibility analysis is carried on. In Section 5, differ-
ent quarantine strategies are considered and compared. We draw our
conclusions in 6.

1World Health Organization Website https://www.who.int/
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2. The Age-structured SEIR model

A classical SEIR model is used with the addition of a quarantine class
as proposed in [8]. Since age is an important factor on the COVID-19
epidemic, it will be assumed that the population is age structured (see
[7], [11], [2] for continuous models and [13], [14] for discrete models).
Three age classes are used; i = 1 : infants with ages in the interval
[0, 19], i = 2 : adults with ages in the interval [20, 59], and i = 3 :
elderly with ages in the interval [60, 100]. The proportion of each age
class in the Brazilian population is shown in Table 1 (see [5]).

Let Si(t), Ei(t), Ii(t), Ri(t) and Qi(t) represent the number of sus-
ceptibles, exposed, infected, removed and quarantined at age class i
respectively at time t ≥ 0. The equations are as follows

(2.1)

Q ′i(t) = pi Si(t)− λiQi(t) , i = 1, 2, 3. ,

S ′1(t) = Λ− (µ1 + ρ1)S1(t)− S1(t)

(
3∑
j=1

β1j Sj(t)

)
− p1 S1(t) + λ1Q1(t) ,

S ′2(t) = ρ1 S1(t)− (µ2 + ρ2)S2(t)− S2(t)

(
3∑
j=1

β2j Sj(t)

)
− p2 S2(t) + λ2Q2(t) ,

S ′3(t) = ρ2 S2(t)− µ3 S3(t)− S3(t)

(
3∑
j=1

β3j Sj(t)

)
− p3 S3(t) + λ3Q3(t) ,

E ′i (t) = Si(t)

(
3∑
j=i

βij Ij(t)

)
− (σi + µi)Ei(t) ,

I ′i (t) = σiEi(t)− (γi + µi +mi) Ii(t) ,

R ′i (t) = γ Ii(t)− µiRi(t) ,

The parameters are all non-negative (or positive) and are described in
Table 2. pi and λi are the quarantine entrance and exit rates for class i,
respectively. Λ , µi and ρi are the vital parameters. In the disease free
situation the population is assumed to be at demographic equilibrium.
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Table 1. Age Classes.

Class Age (years) % Population % Mortality (year) µi (year)

1 [0,19] 40.2 % 12.6 % 1.959/1000

2 [20,59] 50.5 % 33.2 % 4.109/1000

3 [60,100] 9.3 % 54.2 % 36.425/1000

γi is the recovery rate, mi the disease induced death rate and βij is the
infection rate between class i and class j. Typically, it will be assumed
that βij = βji.

The class Qi has the effect of removing susceptible individuals from
the infection dynamics. If pi = λ1 = 0 there is no quarantine and the
system reduces to an age structured SEIR model.

According to [5] Brazil has 18,67 births and 6.26 deaths by 1000
inhabitants per year, giving an annual population growth of 1.24 %.
Let N denote the total population and D the total deaths per year,
thus

D

N
= µ =

6.25

1000
.

Similarly, let Di and Ni be the number of deaths per year and Ni be
the population of age class i respectively. Thus

µi =
Di

Ni

.

With this notation the data on Table 1 is denoted by

% Population =
Ni

N
and % Mortality =

Di

D
.

µi is calculated by

µi =
Di

Ni

=
Di

D

D

N

N

Ni

= µ
Di

D

N

Ni

= µ
(Di/D)

(Ni/N)
.

The disease free steady state is denoted by

(2.2) S∗1 , S
∗
2 , S

∗
3 , Ei = Ii = Ri = 0 i = 1, 2, 3
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where by S∗i we denote the number of individuals of age class i (all
individuals are susceptibles, see table 1). For the model without quar-
antine, adding the equations for the disease free state gives

(S1(t) + S2(t) + S3(t))
′(t) = (Λ− µ1 S1(t)− µ2 S2(t)− µ3 S3(t)) .

Assuming that the total population is constant and on demographic
equilibrium, using the values for the population distribution as the
equilibrium values, one must have

Λ = µ1 S
∗
1 + µ2 S

∗
2 + µ3 S

∗
3 = 6.25/1000 .

The actual annual growth rate will be ignored. Since the time frame of
interest is small compared to the demographic time scale, this has no
consequences on the main conclusions of this work. The demographic
equilibrium implies that ρ1 and ρ2 satisfy

ρ2 =
µ3 S

∗
3

S∗2
= 6.707× 10−3 and ρ1 =

(µ2 + ρ2)S
∗
2

S∗1
= 11.033× 10−3 .

If it is assumed that the demographic, disease and quarantine pa-
rameters are equal for all age classes, the above system reduces to the
classical SEIR system with the quarantine term as suggested by [8].
This will be important for what follows. The parameters for the classi-
cal SEIR model will be estimated so that the number of cases predicted
by the model compares well with the data. This set of parameters will
be used later to adjust the age-structured model 2.1.

3. The unstructured SEIR model

The SEIR model without vital dynamics and with quarantine terms
is given by

(3.1)

Q ′(t) = p S(t)− λQ(t) ,

S ′(t) = −β S(t) I(t)− p S(t) + λQ(t) ,

E ′(t) = β S(t) I(t)− σ E(t) ,

I ′(t) = σ E(t)− γ I(t) ,

R ′(t) = γ I(t) .

Ignoring the quarantine class (p = λ = 0) the parameters β, σ and γ
can be adjusted so that the SEIR curve fits the data. To achieve that
the difference between the SEIR infected curve and the data curve for
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Table 2. Parameters of the basic SEIR model with vital
dynamics.

Parameter Description

pi quarantine entrance rate for class i.

λi quarantine exit rate for class i.

Λ recruitment rate.

µi natural death rate for class i.

ρi survival rate for class i to class i+ 1 i ≤ 2.

βij pathogen’s transmission rate between classes i and j.

σi rate at which exposed of class i convert into the infected class.

γi class i host’s recovery rate.

mi host’s pathogen-induced death rate at class i.

the number of infected is minimized (see [9] for algorithm description).
The parameters found were

(3.2) β∗ = 0.8481, σ∗ = 0.2682 and γ∗ = 0.0870 .

The used initial conditions for the algorithm were β = 2.2/2.9 , σ =
1/5.2 and γ = 1/2.9. The figure 1 shows the data and the SEIR infected
curve using the parameters from (3.2). The considered time interval
was 20 days.

Remark 3.1. The model must be considered with care. The curve I(t),
as given by the SEIR model, predicts the total number of infected
individuals (symptomatic and asymptomatic) at time t. However, to
estimate the number of individuals that will need medical care, one
needs to know the proportion between the reported and unreported
cases. Estimates for the number of unreported cases can be found at
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Figure 1. The number of infected for the SEIR non-
structured model. The used parameters values are as in
3.2 .

[10] and the severity of the reported cases can be found at [4]. Asymp-
tomatic cases can be as high as 75% [3] of all cases; also, ratio estimates
of reported to non reported cases goes from 1/1 to 1/20 [10]. These
uncertainties must be taken into consideration when using the model
to make numerical previsions. The emphasis of this paper is placed on
understanding qualitatively efficient ways of controlling the epidemic.

Quarantines will be characterized by two values: the entrance rate
p and the exit rate λ. p is composed of two terms, γq and ξ. γq is the
average time it takes for a person to enter quarantine (see [8]) and ξ
is a dimensionless multiplicative factor representing the percentage of
individuals that in fact voluntarily quarantine. With this notation

p =
ξ

γq
.

As an example, suppose that 70% of the population quarantine in an
interval of 2 days. Then p = 0.70/2 = 0.35. It will be assumed that
p ∈ [0.0 , 0.40] . p = 0 means that there is no quarantine. As in [8] it
will be assumed that the time to leave quarantine will between 30 and
60 days; giving that λ ∈ [1/60 , 1/30].

Remark 3.2. For future reference we observe that, from definition, p is
smaller then the percentage of quarantined population.
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Figure 2. Prevalence curve for different quarantine ef-
forts. The top figure assumes a 30 days quarantine and
the bottom figure a 45 days quarantine.

The effect of the quarantine on the prevalence curve is twofold: it
decreases the maximum I(t) value and postpones the date of its occur-
rence. To assess the efficiency of the quarantine, the maximum of the
prevalence curve and the time of its occurrence were calculated and are
shown in Figure 3 .
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Figure 3. Maximum of infected as a function of the
quarantine effort p. The figure on the right-hand side
details the fast decrease after p = 0.21 . Quarantine
time is 30 days.
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Figure 4. The time for the maximum of the epidemic
curve as a function of the quarantine effort p. Quarantine
time is 30 days.

The important feature on Figure 3 is the existence of a threshold
value for the epidemic effort. For values greater than this critical value,
the maximum number of infected decreases extremely fast and the max-
imum time essentially stabilizes. This is a common feature for all p and
λ as shown in figure 5.
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Figure 5. The maximum of the epidemic curve as a
function of the quarantine effort p for different quarantine
values.

Critical values for quarantine efforts are clearly seen for the contour
plots for the maximum number of infected. The white region on Figure
6 divides the parameter plane in two regions. The region above has a
maximum number of infected smaller then 1 × 106 infected (by the
above rough estimates ≈ 5000 deaths ). The region below has larger
numbers of infected (and of deaths). The level sets accumulate around
a critical level set, showing again that, qualitatively, quarantines do
work.
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Figure 6. Level curves for the maximum number of
infected as a function of quarantine effort and quarantine
time.

4. Control strategies for the age-structured model

The control measures for the age structured model will be divided
in two types. The first type controls the epidemic parameters ([2]).
This will be made through an R0 sensitivity analysis: the R0 for the
age structured model will be numerically determined and its parameter
dependence will be investigated. The second type of control will be the
age-oriented quarantines. The parameters pi determine the quarantine
effort for each class. Due to the different classes weight on the pop-
ulation composition, and to the different epidemic parameters of each
class, this study allows us to assess the impact of each class quarantine
on the epidemic dynamics.

Before we proceed, we need to adjust the parameters for the struc-
tured model.

4.1. Data Fitting. There are 12 parameters to be determined for the
structured model:

σi , γi and βij = βji for i, j = 1, 2, 3 .

The algorithm fits the parameters to the available data of Brazil’s total
number of reported cases for the first 19 days of infection by a least
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squares method. The distance between the predicted curve

I(t) = I1(t) + I2(t) + I3(t)

and the data curve is minimized. The initial parameters for the min-
imization search algorithm are based on the ones found for the un-
structured SEIR model (3) taking into consideration the population
percentage of each age class. Let ci be the population percentage of
each class, that is (see Table 1), c1 = 0.402, c2 = 0.505 and c3 = 0.093.
The initial values for the interation are chosen as

σi = ci
σ∗i
3

and γi = ci
γ∗i
3

for i = 1, 2, 3

and
βij = β∗ for i ≤ j = 1, 2, 3 ,

The resulting values are listed in Table 3 and a plot of the daily
number of infections and the number of reported cases is shown in
Figure 7.

Table 3. Fitted parameters for the age-structured
SEIR model without vital dynamics.

Parameter Value Parameter Value

β11 1.76168 σ1 0.27300

β12 0.36475 σ2 0.58232

β13 1.32468 σ3 0.69339

β22 0.63802 γ1 0.06862

β23 0.35958 γ2 0.03317

β33 0.57347 γ3 0.35577
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Figure 7. The number infected for the SEIR structured
model. Parameter values as in Table 3

4.2. R0 Analysis. R0 is determined via the next generation approach
[6]. It equals the spectral radius of FV −1, where

F =



0 0 0 β11 S
∗
1 β12 S

∗
1 β31 S

∗
1

0 0 0 β21 S
∗
2 β22 S

∗
2 β23 S

∗
2

0 0 0 β31 S
∗
3 β32 S

∗
3 β33 S

∗
3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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and

V =



D1 0 0 0 0 0

0 D2 0 0 0 0

0 0 D3 0 0 0

−σ1 0 0 D̃1 0 0

0 −σ2 0 0 D̃2 0

0 0 −σ3 0 0 D̃3


,

where Di = σi+µi and D̃i = γi+µi+mi for i ∈ {1, 2, 3}. Thus, F V −1,
is given by

FV −1 =

(
K11 K12

K21 K31

)
,

where the block K11 is


β11 σ1 S∗

1

γ1 (σ1+µ1)(γ1+µ1+m1)

β12 σ2 S∗
1

γ2 (σ2+µ2)(γ2+µ2+m2)

β13 σ3 S∗
1

γ3 (σ3+µ3)(γ3+µ3+m3)

β21 σ1 S∗
2

γ1 (σ1+µ1)(γ1+µ1+m1)

β22 σ2 S∗
2

γ2 (σ2+µ2)(γ2+µ2+m2)

β23 σ3 S∗
2

γ3 (σ3+µ3)(γ3+µ3+m3)

β31 σ1 S∗
3

γ1 (σ1+µ1)(γ1+µ1+m1)

β32 σ2 S∗
3

γ2 (σ2+µ2)(γ2+µ2+m2)

β33 σ3 S∗
3

γ3 (σ3+µ3)(γ3+µ3+m3)

 ,

the block K12 is 
β11 S∗

1

γ1+µ1+m1

β12 S∗
1

γ2+µ2+m2

β13 S∗
1

γ3+µ3+m3

β21 S∗
2

γ1+µ1+m1

β22 S∗
2

γ2+µ2+m2

β23 S∗
2

γ3+µ3+m3

β31 S∗
3

γ1+µ1+m1

β32 S∗
3

γ2+µ2+m2

β33 S∗
3

γ3+µ3+m3


and K21 and K22 are the 3× 3 zero matrix. Due to the block structure
of F V −1, its eigenvalues are easily calculated. However, due to the
high number of parameters, their expression is too cumbersome to be
of any analytical use. The sensitivity analysis is therefore computed
numerically. Figures 8, 9, 10 and 11 show the R0 parameter depen-
dence.

The use of the parameters of the classical SIR model as control vari-
ables was studied at [1]. We will follow its interpretation. Measures
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Figure 8. R0 as a γi function. Different curves show
which γi is varying while the others are kept constant.
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Figure 9. R0 as a σi function. Different curves show
which σi is varying while the others are kept constant.

as keeping social distance, wearing protective masks, washing hands,
etc have the effect of reducing the contact rates βij. Identifying in-
fected through tests, body temperature checks, etc and putting them
into quarantine has the effect of increasing the removal rates γi. σi is
a parameter that can not be controlled.

The results can be summarized as follows:
i) Class 1 is the most sensitive to screening measures (see figure 8 ).

Youngsters should be preferentially screened.
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Figure 10. R0 as a βii function. Different curves show
which βii is varying while the others are kept constant.
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shows which βij is varying while the others are kept con-
stant.

ii) Considering the direct contacts within the same class, class 2 is
the more sensitive (see Figure 10 ). Social distance between adults has
the biggest impact on R0.

iii) For the direct contact between different class, β12 has the greatest
impact on R0.
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5. The effects of different quarantine policies

In this section we study the impacts of different quarantine strategies.
The disease induced mortality rate was taken into account by consid-
ering the number of deaths as a fraction of the recovered class. Death
rates for all age groups are estimated using the data from [4] (Table
4). As mentioned in Section 3, I1, I2 and I3 include symptomatic and
asymptomatic infected individuals as well as unreported cases, so death
rates will be multiplied by a factor of 0.25 (since only 25% of the in-
fected are symptomatic [3]) and by 1/20 (due to unreported cases [10]).
This leaves us with a multiplicative factor of φ = 0.25∗(1/20) = 0.0125
to estimate the number of deaths. Since we will be working with rela-
tive proportions, the actual value of φ will be of no importance.

Table 4. Death rates for the age-structured model
(data taken from [4]).

Age group Number of cases Deaths % Death

1 350 1 0.29%

2 9541 36 0.38%

3 9068 768 8.47%

With these values at hand, we can study the impact of a quarantine
with parameters λ and pi, for i ∈ {1, 2, 3}. Calling p the quarantine ef-
fort for the unstructured model, it is assumed that the total quarantine
effort equals the effort for the non-structured model that is

p1 + p2 + p3 = p .

Remark 5.1. As mentioned in 3.2, calling qi i = 1, 2, 3 the percentage
of quarantined on each age class, it follows that

p < q1 + q2 + q3 ≤ 1 .

Four different choices for the pi’s will be used, as detailed in Table 5.
These are choices for the quarantine effort of each age group. Strategy
S1 splits the effort equally among the three groups. Strategy S2 em-
phasizes a stronger isolation of the elderly (twice as much as the other
groups). Strategy S3 enforces isolation of the youngsters and adults



18 C. CASTILHO ET AL.

twice as much as it does for the elderly. Finally, strategy S4 doubles
the quarantine effort on the adults in comparison to the others. To as-
sess the efficiency of these different control strategies, for a fixed control
effort p, each control strategy will be calculated for different quarantine
times λ ∈ {1/30, 1/45, 1/60}.

Table 5. Quarantine strategies.

Strategy Choices for the pi

S1 p1 = p/3, p2 = p/3, p3 = p/3

S2 p1 = p/6, p2 = p/6, p3 = 2p/3

S3 p1 = 2p/5, p2 = 2p/5, p3 = p/5

S4 p1 = p/6, p2 = 2p/3, p3 = p/6

The estimation of the number of deaths can be made by multiply-
ing the number of recovered at the end of the epidemic in each of the
three age groups by the death rates from Table 4 and by the multi-
plicative factor φ. However, due to parameters uncertainties and lack
of estimations for the parameter p, a different approach is taken. We
arbitrarily chose one of the values as unit and calculated all the other
results proportionally. The results for p = 0.2 are available in Table 6.
(For reference only, the number of deaths chosen as unit was 2869).

One could argue that the optimal control would occur if we put all the
quarantine effort in the isolation of the elderly and no isolation at all for
youngsters and adults. With our terminology, this means considering
a strategy S5 defined by p1 = p2 = 0 and p3 = p. However, this
leads to two main problems: first, due to the small percentage of the
elder class the quarantine effort would be to small (in fact smaller then
0.1) to be of any significance. Second, it would allow for a much higher
number of infected individuals (see Figure 12), hence a great increase in
the total of hospitalizations, which would collapse the Health System.
Therefore, to achieve better quarantine results, the total effort needs
to include all age-groups, with more emphasis on the elderly since they
have a higher fatality rate due to the disease.
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Table 6. Proportion of deaths for each age group for
different quarantine strategies and durations.

λ Age group S1 S2 S3 S4

1 1 1.02 0.99 1.03

1/30 2 1.61 1.67 1.59 1.47

3 7.20 6.43 7.46 7.51

Total 9.81 9.12 10.04 10.01

1 0.95 0.99 0.93 1.01

1/45 2 1.51 1.60 1.47 1.29

3 6.77 5.75 7.18 7.26

Total 9.23 8.34 9.58 9.56

1 0.90 0.96 0.88 0.98

1/60 2 1.41 1.54 1.36 1.14

3 6.38 5.21 6.90 7.01

Total 8.69 7.71 9.14 9.13

Notice that strategy S2 is, by far, the best among these. All other
strategies end up with, at least, 7.5% more deaths. We can also analyse
the strategies by plotting them. Let µi, i ∈ {1, 2, 3}, be the death rates
from Table 4, so

Dj(t) = φ
3∑
i=1

µiRi(t)
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Figure 12. Plots of the total number of infected, as
percentages of the total population, for strategies S2 and
S5. The quarantine parameters were p = 0.2 and λ =
1/60.

converges to the total amount of deaths that result from strategy Sj,
j ∈ {1, 2, 3, 4}. Figure 13 plots the graphs of Dj(t), normalized by

lim
t→∞
D2(t),

produced by the four strategies for different values of p. Notice yet
that, in all four cases, the strategy that produces the smallest limit
value (hence the smallest death toll) is S2.

6. Conclusions

In this paper we introduced an age-structured SEIR model with a
quarantine compartment. Three age classes were used: infants (0 to 19
years), adults (20 to 59 years) and elderly (60 to 100 years). First we
studied the associated classical unstructured SEIR model without vital
dynamics. The parameters were fitted by a least-square algorithm and
the impact of the quarantine parameters p and λ were studied. Our
main findings concern the existence of a numerical threshold value for
the quarantine parameters: above a certain curve on the (p, λ)-plane,
the maximum number of infected decreases in an accentuated way.
This shows that an abrupt decline on the number of cases should be
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Figure 13. Plots of Dj(t) for λ = 1
30

, j ∈ {1, 2, 3, 4}.

observed if the quarantine is being efficient. If this decline is not being
observed, quarantine effort and time should be increased.

The parameters obtained for the unstructured SEIR model were used
to adjust the parameters for the age-structured SEIR model. Using
this data, the basic reproduction number R0 was calculated and its
dependence on the epidemic values was studied. Our findings for the
R0 analysis are as follows:

i) Class 1 is the most sensitive to screening measures (see Figure 8).
Youngsters should be preferentially screened.

ii) Considering the direct contacts within the same class, class 2 is
the more sensitive (see Figure 10 ). Social distance between adults has
the biggest impact on R0.

iii) For the direct contact between different class, β12 has the greatest
impact on R0.
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Finally we studied the impact of age-oriented campaigns consider-
ing different strategies and different values of p for the total campaign
effort. Recalling that p is bounded by the percentage of quarantined
population (see remarks 3.2 and 5.1), our findings show that the highest
possible quarantine must be made, and then, this effort must concen-
trate on putting into quarantine the total of elders and assuring equal
proportions of adults and youngsters.
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